储能科学与技术 ›› 2020, Vol. 9 ›› Issue (1): 217-238.doi: 10.19799/j.cnki.2095-4239.2019.0203

• 新储能体系 • 上一篇    下一篇

氟离子穿梭电池研究进展

余一凡1,2, 顾玉萍1,2, 李驰麟1,2()   

  1. 1. 中国科学院上海硅酸盐研究所,高性能陶瓷和超微结构国家重点实验室,上海 201899
    2. 中国科学院大学材料与光电研究中心,北京 100049
  • 收稿日期:2019-09-10 修回日期:2019-09-26 出版日期:2020-01-05 发布日期:2019-09-23
  • 作者简介:余一凡(1996—),男,硕士研究生,研究方向为氟离子电|池与金属氟化物正极材料,E-mail:yyfnem@163.com;联系人:李驰麟,博士,研究员,研究方向为新型储能电池体系与材料,E-mail:chilinli@mail.sic.ac.cn
  • 基金资助:
    国家重点研发计划(2016YFB0901600);国家自然科学基金(U1830113);上海科委项目(16DZ2270100)

Progress on fluoride ion shuttle batteries

YU Yifan1,2, GU Yuping1,2, LI Chilin1,2()   

  1. 1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 201899, China
    2. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2019-09-10 Revised:2019-09-26 Online:2020-01-05 Published:2019-09-23

摘要:

氟离子电池(FIB)作为一种新型储能电池体系,其研究虽处于起步阶段,但凭借高的能量密度、较宽的电化学窗口、电荷传输离子良好的迁移动力学等优点吸引了越来越多科学家的注意。获得高性能FIB的难点在于允许F-在电化学反应过程中快速传输的电解质的研发以及实现氟基电化学反应的电极材料的研制。本文综述了自2011年首次证明可充FIB的可行性以来FIB的电解质和电极材料的研究进展,特别针对已开发的固态电解质、液态电解质、转换反应型电极材料和嵌入反应式电极材料进行了介绍。这些研究成果阐述了不同类型固态电解质的离子传导机理,解决了氟化物盐难溶、FIB长期以来只能在高温下运行的难题,指出了造成循环过程中容量衰减的关键因素。

关键词: 氟离子电池, 固态电解质, 液态电解质, 转换型电极材料, 嵌入型电极材料

Abstract:

Although research on the fluoride-ion battery (FIB) as a new energy storage system is in its infancy, FIB has attracted increasing attention because of its high energy density, wide electrochemical window, and excellent charge transport kinetics. The difficulty in achieving high performance FIB lies in the exploration of electrolytes which allow rapid transportation of F-during electrochemical reactions and the development of electrode materials for fluorine-based electrochemical reactions. In this review, the research progress in terms of the electrolyte and electrode materials of FIBs since the first proof of feasibility for a rechargeable FIB was presented in 2011 is summarized by introducing the developed solid electrolytes, liquid electrolytes, and conversion-and intercalation-based electrode materials. These research results expound the ion conduction mechanism of different prototype solid electrolytes and solve issues related to insoluble fluoride salts and the fact that the FIB can only be used at high temperatures. They also highlight the key factors that result in capacity decay during cycling.

Key words: Fluoride ion battery, solid electrolyte, liquid electrolyte, conversion-type electrode materials, intercalation-type electrode materials

中图分类号: