Energy Storage Science and Technology ›› 2017, Vol. 6 ›› Issue (1): 1-10.doi: 10.12028/j.issn.2095-4239.2016.0017
WANG Yujiao1, WANG Wei1, FENG Pingyuan1, WANG Kangli2, CHENG Shijie2, JIANG Kai1,2
Received:
2016-05-10
Revised:
2016-05-26
Online:
2017-01-03
Published:
2017-01-03
WANG Yujiao1, WANG Wei1, FENG Pingyuan1, WANG Kangli2, CHENG Shijie2, JIANG Kai1,2. Research progresses of the analytical applications of scanning electrochemical microscopy in Li-ion batteries[J]. Energy Storage Science and Technology, 2017, 6(1): 1-10.
[1] DENG D. Li-ion batteries: Basics, progress, and challenges[J]. Energy Science & Engineering, 2015, 3(5): 385-418. [2] FEHSE M, VENTOSA E. Is TiO2 (B) the future of titanium-based battery materials[J].ChemPlusChem, 2015, 80(5): 785-795. [3] VENTOSA E, CHUHMANN W. Scanning electrochemical microscopy of Li-ion batteries[J]. Physical Chemistry Chemical Physics, 2015, 17(43): 28441-28450. [4] JANG D H, SHIN Y J, OH S M. Dissolution of spinel oxides and capacity losses in 4 V Li/Lix Mn2O4 cells[J]. Journal of the Electrochemical Society, 1996, 143(7): 2204-2211. [5] KOMABA S, KUMAGAI N, KATAOKA Y. Influence of manganese (II), cobalt(II), and nickel(II) additives in electrolyte on performance of graphite anode for lithium-ion batteries[J]. Electrochimica Acta, 2002, 47(8): 1229-1239. [6] VERMA P, MAIRE P, NOVÁK P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica Acta, 2010, 55(22): 6332-6341. [7] HARDWICK L J, HOLZAPFEL M, NOVÁK P, et al. Electrochemical lithium insertion into anatase-type TiO2: An in situ Raman microscopy investigation[J]. Electrochimica Acta, 2007, 52(17): 5357-5367. [8] NELSON J, MISRA S, YANG Y, et al. In operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries[J]. Journal of the American Chemical Society, 2012, 134(14): 6337-6343. [9] DUPRÉ N, GREY C P, PARISE J B, et al. Short-and long-range order in the positive electrode material, Li(NiMn)0.5O2: A joint X-ray and neutron diffraction, pair distribution function analysis and NMR study[J]. Journal of the American Chemical Society, 2005, 127(20): 7529-7537. [10] MAIYALAGAN T, DONG X, CHEN P, et al. Electrodeposited Pt on three-dimensional interconnected graphene as a free-standing electrode for fuel cell application[J]. Journal of Materials Chemistry, 2012, 22(12): 5286-5290. [11] LIU N, WU H, MCDOWELL M T, et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes[J]. Nano letters, 2012, 12(6): 3315-3321. [12] YOU J, DOU L, YOSHIMURA K, et al. A polymer tandem solar cell with 10.6% power conversion efficiency[J]. Nature Communications, 2013, 4(1446): 66-78. [13] BUQA H, WÜRSIG A, VETTER J, et al. SEI film formation on highly crystalline graphitic materials in lithium-ion batteries[J]. Journal of Power Sources, 2006, 153(2): 385-390. [14] NIE M, CHALASANI D, ABRAHAM D P, et al. Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy[J]. The Journal of Physical Chemistry C, 2013, 117(3): 1257-1267. [15] BECKER C R, STRAWHECKER K E, MCALLISTER Q P, et al. In situ atomic force microscopy of lithiation and delithiation of silicon nanostructures for lithium ion batteries[J]. ACS Nano, 2013, 7(10): 9173-9182. [16] COFFEY D C, REID O G, RODOVSKY D B, et al. Mapping local photocurrents in polymer/fullerene solar cells with photoconductive atomic force microscopy[J]. Nano Letters, 2007, 7(3): 738-744. [17] DUAN W, VEMURI R S, MILSHTEIN J D, et al. A symmetric organic-based nonaqueous redox flow battery and its state of charge diagnostics by FTIR[J]. Journal of Materials Chemistry A, 2016, 4(15): 5448-5456. [18] LAI S C S, MACPHERSON J V, UNWIN P R. In situ scanning electrochemical probe microscopy for energy applications[J]. MRS Bulletin, 2012, 37(7): 668-674. [19] LIU H Y, FAN F R F, LIN C W, et al. Scanning electrochemical and tunneling ultramicroelectrode microscope for high-resolution examination of electrode surfaces in solution[J]. Journal of the American Chemical Society, 1986, 108(13): 3838-3839. [20] BARD A J, DENUAULT G, LEE C, et al. Scanning electrochemical microscopy—A new technique for the characterization and modification of surfaces[J]. Accounts of Chemical Research, 1990, 23(11): 357-363. [21] YIN Qihe. Fundamental and application of scanning electrochemical microscopy[J]. Journal of the Graduates Sun Yat-Sen University(Natural Science and Medicine), 2011, 32(2): 46-60. [22] DENG H, PELJO P, MOMOTENKO D, et al. Kinetic differentiation of bulk/interfacial oxygen reduction mechanisms at/near liquid/liquid interfaces using scanning electrochemical microscopy[J]. Journal of Electroanalytical Chemistry, 2014, 732: 101-109. [23] RITZERT N L, RODRIGUEZ-LOPEZ J, TAN C, et al. Kinetics of interfacial electron transfer at single-layer graphene electrodes in aqueous and nonaqueous solutions[J]. Langmuir, 2013, 29(5): 1683-1694. [24] AHMED S, JI S, PETRIK L, et al. Scanning electrochemical microscopic study of hydrogen oxidation and evolution at electrochemically deposited Pt nanoparticulate electrode incorporated in polyaniline[J]. Analytical Sciences, 2004, 20(9): 1283-1287. [25] WEI C, BARD A J, MIRKIN M V. Scanning electrochemical microscopy. 31. application of SECM to the study of charge transfer processes at the liquid/liquid interface[J]. The Journal of Physical Chemistry, 1995, 99(43): 16033-16042. [26] KURULUGAMA R T, WIPF D O, TAKACS S A, et al. Scanning electrochemical microscopy of model neurons: Constant distance imaging[J]. Analytical Chemistry, 2005, 77(4): 1111-1117. [27] WANG W, XIONG Y, DU F Y, et al. Imaging and detection of morphological changes of single cells before and after secretion using scanning electrochemical microscopy[J]. Analyst, 2007, 132(6): 515-518. [28] SÁNCHEZ C M, SOLLA G J, VIDAL I F J, et al. Imaging structure sensitive catalysis on different shape-controlled platinum nanoparticles[J]. Journal of the American Chemical Society, 2010, 132(16): 5622-5624. [29] LU G, COOPER J S, MCGINN P J. SECM imaging of electrocatalytic activity for oxygen reduction reaction on thin film materials[J]. Electrochimica Acta, 2007, 52(16): 5172-5181. [30] KHAMIS D, MAHÉ E, DARDOIZE F, et al. Peroxodisulfate generation on boron-doped diamond microelectrodes array and detection by scanning electrochemical microscopy[J]. Journal of Applied Electrochemistry, 2010, 40(10): 1829-1838. [31] FERNANDEZ J L, BARD A J. Scanning electrochemical microscopy 50. Kinetic study of electrode reactions by the tip generation- substrate collection mode[J]. Analytical Chemistry, 2004, 76(8): 2281-2289. [32] ECKHARD K, CHEN X, TURCU F, et al. Redox competition mode of scanning electrochemical microscopy(RC-SECM) for visualisation of local catalytic activity[J]. Physical Chemistry Chemical Physics, 2006, 8(45): 5359-5365. [33] ZHANG J, UNWIN P R. Microelectrochemical measurements of electron transfer rates at the interface between two immiscible electrolyte solutions: Potential dependence of the ferro/ferricyanide-7, 7,8,8-tetracyanoquinodimethane (TCNQ)/TCNQ-system[J]. Physical Chemistry Chemical Physics, 2002, 4(15): 3820-3827. [34] ZHANG Z, YUAN Y, SUN P, et al. Study of electron-transfer reactions across an externally polarized water/1,2-dichloroethane interface by scanning electrochemical microscopy[J]. The Journal of Physical Chemistry B, 2002, 106(26): 6713-6717. [35] LI F, UNWIN P R. Scanning electrochemical microscopy(SECM) of photoinduced electron transfer kinetics at liquid/liquid interfaces[J]. The Journal of Physical Chemistry C, 2015, 119 (8): 4031-4043. [36] HOLT K B, BARD A J, SHOW Y, et al. Scanning electrochemical microscopy and conductive probe atomic force microscopy studies of hydrogen-terminated boron-doped diamond electrodes with different doping levels[J]. The Journal of Physical Chemistry B, 2004, 108 (39): 15117-15127. [37] LAFORGE F O O, VELMURUGAN J, WANG Y, et al. Nanoscale imaging of surface topography and reactivity with the scanning electrochemical microscope[J]. Analytical Chemistry, 2009, 81(8): 3143-3150. [38] SIDANE D, TOUZET M, DEVOS O, et al. Investigation of the surface reactivity on a 304L tensile notched specimen using scanning electrochemical microscopy[J]. Corrosion Science, 2014, 87: 312-320. [39] PUST S E, MAIER W, WITTSTOCK G. Investigation of localized catalytic and electrocatalytic processes and corrosion reactions with scanning electrochemical microscopy(SECM)[J]. Zeitschrift Für Physikalische Chemie International Journal of Research in Physical Chemistry and Chemical Physics, 2008, 222(10): 1463-1517. [40] ZHANG J, JIA J, HAN L, et al. Kinetic investigation on the confined etching system of n-type gallium arsenide by scanning electrochemical microscopy[J]. The Journal of Physical Chemistry C, 2014, 118(32): 18604-18611. [41] MANDLER D, BARD A J. High resolution etching of semiconductors by the feedback mode of the scanning electrochemical microscope[J]. Journal of the Electrochemical Society, 1990, 137(8): 2468-2472. [42] CHEN X, BOTZ A J R, MASA J, et al. Characterisation of bifunctional electrocatalysts for oxygen reduction and evolution by means of SECM[J]. Journal of Solid State Electrochemistry, 2015, 20(4): 1019-1027. [43] ZHANG F, ROZNYATOVSKIY V, FAN F R, et al. A method for rapid screening of photosensitizers by scanning electrochemical microscopy(SECM) and the synthesis and testing of a porphyrin sensitizer[J]. The Journal of Physical Chemistry C, 2011, 115(5): 2592-2599. [44] MARTIN C J, BOZIC-WEBER B, CONSTABLE E C, et al. Development of scanning electrochemical microscopy(SECM) techniques for the optimization of dye sensitized solar cells[J]. Electrochimica Acta, 2014, 119: 86-91. [45] JOHNSON L, WALSH D A. Tip generation-substrate collection-tip collection mode scanning electrochemical microscopy of oxygen reduction electrocatalysts[J]. Journal of Electroanalytical Chemistry, 2012, 682: 45-52. [46] XU F, BEAK B, JUNG C. In situ electrochemical studies for Li+ ions dissociation from the LiCoO2 electrode by the substrate-generation/ tip-collection mode in SECM[J]. Journal of Solid State Electrochemistry, 2011, 16(1): 305-311. [47] SNOOK G A, HUYNH T D, BEST A S. SECM dissolution studies of pasted battery cathodes in ionic liquid electrolytes[J]. ECS Transactions, 2014, 58(36): 1-8. [48] LUNG-HAO HU B, WU F Y, LIN C T, et al. Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity[J]. Nature Communications, 2013, 4: 1687. [49] ZHAO Y, PENG L, LIU B, et al. Single-crystalline LiFePO4 nanosheets for high-rate Li-ion batteries[J]. Nano Letters, 2014, 14(5): 2849-2853. [50] NOEROCHIM L, YURWENDRA A O, SUSANTI D. Effect of carbon coating on the electrochemical performance of LiFePO4/C as cathode materials for aqueous electrolyte lithium-ion battery[J]. Ionics, 2015, 22(3): 341-346. [51] HOU Y, WANG X, ZHU Y, et al. Macroporous LiFePO4 as a cathode for an aqueous rechargeable lithium battery of high energy density[J]. Journal of Materials Chemistry A, 2013, 1(46): 14713-14718. [52] TAKAHASHI Y, KUMATANI A, MUNAKATA H, et al. Nanoscale visualization of redox activity at lithium-ion battery cathodes[J]. Nature Communications, 2014, 5: 5450. [53] BARTON Z J, RODRIGUEZ-LOPEZ J. Lithium ion quantification using mercury amalgams as in situ electrochemical probes in nonaqueous media[J]. Analytical Chemistry, 2014, 86(21): 10660-10667. [54] ZAMPARDI G, VENTOSA E, LA MANTIA F, et al. Scanning electrochemical microscopy applied to the investigation of lithium (De-) insertion in TiO2[J]. Electroanalysis, 2015, 27(4): 1017-1025. [55] ZAMPARDI G, VENTOSA E, LA MANTIA F, et al. In situ visualization of Li-ion intercalation and formation of the solid electrolyte interphase on TiO2 based paste electrodes using scanning electrochemical microscopy[J]. Chemical Communications, 2013, 49(81): 9347-9349. [56] ZAMPARDI G, KLINK S, KUZNETSOV V, et al. Combined AFM/SECM investigation of the solid electrolyte interphase in Li-ion batteries[J]. ChemElectroChem, 2015, 2(10): 1607-1611. [57] BÜLTER H, PETERS F, SCHWENZEL J, et al. Spatiotemporal changes of the solid electrolyte interphase in lithium-ion batteries detected by scanning electrochemical microscopy[J]. Angewandte Chemie International Edition, 2014, 53(39): 10531-10535. [58] BÜLTER H, PETERS F, SCHWENZEL J, et al. In situ quantification of the swelling of graphite composite electrodes by scanning electrochemical microscopy[J]. Journal of the Electrochemical Society, 2015, 163(2): A27-A34. [59] VENTOSA E, WILDE P, ZINN A H, et al. Understanding surface reactivity of Si electrodes in Li-ion batteries by in-operando scanning electrochemical microscopy[J]. Chemical Communications, 2016: 6825-6828. |
[1] | SHEN Xiu, ZENG Yuejing, LI Ruiyang, LI Jialin, LI Wei, ZHANG Peng, ZHAO Jinbao. In situ solidification of flame-retardant lithium-ion batteries by γ-ray irradiation [J]. Energy Storage Science and Technology, 2022, 11(6): 1816-1821. |
[2] | Wenting JIN, Mansheng LIAO, Ji HUANG, Zidong WEI. The technological trend of high energy density Li-ion batteries for vehicles [J]. Energy Storage Science and Technology, 2022, 11(1): 350-358. |
[3] | YANG Xulai, ZHANG Zheng, CAO Yong, LIU Chengshi, AI Xinping. The structural engineering for achieving high energy density Li-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(4): 1127-1136. |
[4] | YANG Xulai, CHEN Houmei, GAO Er’ping. Project “development and application of lithium ion batteries with high specific energy density”#br# [J]. Energy Storage Science and Technology, 2017, 6(5): 1145-1147. |
[5] | XIA Dingguo. Project “ Key technology and basic science problem reach for high energy density lithium batteries” [J]. Energy Storage Science and Technology, 2017, 6(1): 165-168. |
[6] | LI Hong. Project “High energy density lithium batteries for long range EV” [J]. Energy Storage Science and Technology, 2016, 5(6): 915-918. |
[7] | LIU Bonan1, XU Quan2, CHU Geng1, LU Hao1, YIN Yaxia2, LUO Fei1, ZHENG Jieyun1, GUO Yuguo2, LI Hong1. Research progress on the nano-Si/C materials with high capacity for Lithium-iom battery [J]. Energy Storage Science and Technology, 2016, 5(4): 417-421. |
[8] | XIA Yonggao, LIU Zhaoping. Research progress on the Li-excess Mn-based cathode materials with high capacity for lithium-ion battery [J]. Energy Storage Science and Technology, 2016, 5(3): 384-387. |
[9] | HUANG Shu, REN Jianguo, YUAN Guohui. Research progress of water-based binder for Li-ion batteries [J]. Energy Storage Science and Technology, 2016, 5(2): 129-134. |
[10] | ZHU Jianyu, FENG Jiemin, WANG Yuhui, GUO Zhansheng. Mechanical properties of copper current collection foils of Li-ion batteries [J]. Energy Storage Science and Technology, 2014, 3(4): 360-363. |
[11] | LU Xia, LI Hong. Fundamental scientific aspects of lithium batteries (Ⅱ)--Defect chemistry in battery materials [J]. Energy Storage Science and Technology, 2013, 2(2): 157-164. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||