Energy Storage Science and Technology ›› 2017, Vol. 6 ›› Issue (1): 154-161.doi: 10.12028/j.issn.2095-4239.2016.0028
Previous Articles Next Articles
SONG Jie1, ZHAO Bo1, LIANG Danxi2, LIU Haijun1
Received:
2016-06-15
Revised:
2016-09-27
Online:
2017-01-03
Published:
2017-01-03
SONG Jie1, ZHAO Bo1, LIANG Danxi2, LIU Haijun1. Strategy for tracking maximum efficiency of a expander-generator system of compressed air energy storage[J]. Energy Storage Science and Technology, 2017, 6(1): 154-161.
[1] 陈来军, 梅生伟, 王俊杰, 等. 面向智能电网的大规模压缩空气储能技术[J]. 电工电能新技术, 2014, 33(6): 1-6.
CHEN Laijun, MEI Shengwei, WANG Junjie, et al. Smart grid oriented large-scale compressed air energy storage technology[J]. Advanced Technology of Electrical Engineering and Energy, 2014, 33(6): 1-6.
[2] BARTON J P, INFIELD D G. Energy storage and its use with intermittent renewable energy[J]. IEEE Transactions on Energy Conversion, 2004, 19(2): 441-447.
[3] 薛皓白, 张新敬, 陈海生, 等. 微型压缩空气储能系统释能过程分析[J]. 工程热物理学报, 2014, 35(10): 1923-1929.
XUE Haobai, ZHANG Xinjing, CHEN Haisheng, et al. Analysis of energy release process of micro-compressed air energy storage systems[J]. Journal of Engineering Thermophysics, 2014, 35(10): 1923-1929.
[4] 肖定垚, 王承民, 依涛, 等. 压缩空气蓄能(CAES)综述[J]. 电网与清洁能源, 2014, 30(1): 75-79.
XIAO Dingyao, WANG Chengmin, YI Tao, et al. Review of compressed air energy storage system[J]. Power System and Clean Energy, 2014, 30(1): 75-79.
[5] 张新敬. 压缩空气储能系统若干问题的研究[D]. 北京: 中国科学院工程热物理研究所, 2011.
ZHANG Xinjing. Investigation on compressed air energy storage system[D]. Beijing: Institute of Engineering Thermophysics Chinese Academy of Science, 2011.
[6] 刘文毅, 张伟德. 典型压缩空气蓄能系统流程与参数优化[J]. 工程热物理学报, 2013, 34(9): 1615-1620.
LIU Wenyi, ZHANG Weide. Process and parameters optimization of a typical compressed air energy storage system[J]. Journal of Engineering Thermophysics, 2013, 34(9): 1615-1620.
[7] 李连生, 杨启超, 赵远扬. 微小型压缩空气储能系统研究[J]. 流体机械, 2014, 42(3): 24-27.
LI Liansheng, YANG Qichao, ZHAO Yuanyang. Research on micro-small scale of compressed air energy storage system[J]. Fluid Machinery, 2014, 42(3): 24-27.
[8] 刘斌, 陈来军, 梅生伟, 等. 多级回热式压缩空气储能系统效率评估方法[J]. 电工电能新技术, 2014, 33(8): 1-6.
LIU Bin, CHEN Laijun, MEI Shengwei, et al. Cycle efficiency evaluation method of multi-stage RCAES system[J].Advanced Technology of Electrical Engineering and Energy, 2014, 33(8): 1-6.
[9] 张淑洁. 膨胀机带发电机回收膨胀功发电原理及控制方法[J]. 电机技术, 2014(1): 46-47.
ZHANG Shujie. Principle and control method of recovery expansion work of expander with generator[J]. Electrotechnics, 2014(1): 46-47.
[10] WANG Jihong, LUO Xing. Scroll machine for power generation: UK 1306165.0[P]. 2013-05-04.
[11] 薛小代, 梅生伟, 林其友, 等. 面向能源互联网的非补燃压缩空气储能及应用前景初探[J]. 电网技术, 2016, 40(1): 165-171.
XUE Xiaodai, MEI Shengwei, LIN Qiyou, et al. Energy internet oriented non-supplementary fired compressed air energy storage and prospective of application[J]. Power System Technology, 2016, 40(1): 165-171.
[12] 王成山, 武震, 杨献莘, 等. 基于微型压缩空气储能的混合储能系统建模与实验验证[J]. 电力系统自动化, 2014, 38(23): 22-26.
WANG Chengshan, WU Zhen, YANG Xianshen, et al. Modeling and verification of hybrid energy storage system based on micro compressed air energy storage[J]. Automation of Electric Power Systems, 2014, 38(23): 22-26.
[13] 褚晓广, 张承慧. 机械耦合式压缩空气储能风电系统涡旋机切入控制[J]. 电机与控制学报, 2014, 18(7): 79-85.
CHU Xiaoguang, ZHANG Chenghui. Scroll cutting-in control of mechanical coupling compressed air energy storage wind generation system[J]. Electric Machines and Control, 2014, 18(7): 79-85.
[14] 占文涛. 基于双向 PWM 变换器的微燃机发电系统起动/发电控制研究[D]. 南京: 南京航天航空大学, 2009.
ZHAN Wentao. Starter and generator control research on a micro-turbine generation system based on bidirectional PWM converter[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009.
[15] LUO Xing, WANG Jihong. Study of a new strategy for pneumatic actuator system energy efficiency improvement via the scroll expander technology[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(5): 1508-1518.
[16] 安琪. 微小容量压缩空气储能最大效率点跟踪研究[D]. 北京: 北京交通大学, 2015.
AN Qi. Research of maximum efficiency point tracking of micro-small scaled compressed air energy storage system[D]. Beijing: Beijing Jiao Tong University, 2015.
[17] 褚晓广, 张承慧, 孔英, 等. 新型压缩空气储能风电系统膨胀助力控制[J]. 天津大学学报, 2014, 47(7): 601-607.
CHU Xiaoguang, ZHANG Chenghui, KONG Ying, et al. Expansion assistance control of the novel wind generation system with compressed air energy storage[J]. Journal of Tianjin University, 2014, 47(7): 601-607.
[18] 黄先进, 郝瑞祥, 张立伟, 等. 压缩空气与超级电容混合储能系统能量控制策略[J]. 北京交通大学学报, 2014, 38(4): 56-62.
HUANG Xianjin, HAO Ruixiang, ZHANG Liwei, et al. Energy management of the hybrid energy storage system based on supercapacitors and compressed air[J]. Journal of Beijing Jiao Tong University, 2014, 38(4): 56-62.
[19] 徐玉杰, 陈海生. 风光互补的压缩空气储能与发电一体化系统特性分析[J]. 中国电机工程学报, 2012, 32(20): 88-95.
XU Yujie, CHEN Haisheng. Performance analysis on an integrated system of compressed air energy storage and electricity production with wind-solar complementary method[J]. Proceedings of the CSEE, 2012, 32(20): 88-95.
[20] 朱明善. 工程热力学[M]. 第2版. 北京: 清华大学出版社, 2011.
ZHU Mingshan. Engineering thermophysics[M]. 2nd Edition, Beijing: TsingHua University Press, 2011.
[21] 陈伯时. 电力拖动自动控制系统-运动控制系统[M]. 第3版. 北京: 机械工业出版社, 2012.
CHEN Boshi. Automatic control system for electric drive[M]. 3rd Edition, Beijing: China Machine Press, 2012.
[22] 张兴, 张崇巍. PWM整流器及其控制[M]. 北京: 机械工业出版社, 2014.
ZHANG Xing, ZHANG Chongwei. PWM rectifier and its control[M]. Beijing: China Machine Press, 2014.
[23] 邹滋祥. 相似理论在叶轮机械模型研究中的应用[M]. 北京: 科学出版社, 1984.
ZOU Zixiang. The application of similarity theory in the study of the mechanical model of the impeller[M]. Beijing: Science Press, 1984.
[1] 陈来军, 梅生伟, 王俊杰, 等. 面向智能电网的大规模压缩空气储能技术[J]. 电工电能新技术, 2014, 33(6): 1-6. CHEN Laijun, MEI Shengwei, WANG Junjie, et al. Smart grid oriented large-scale compressed air energy storage technology[J]. Advanced Technology of Electrical Engineering and Energy, 2014, 33(6): 1-6. [2] BARTON J P, INFIELD D G. Energy storage and its use with intermittent renewable energy[J]. IEEE Transactions on Energy Conversion, 2004, 19(2): 441-447. [3] 薛皓白, 张新敬, 陈海生, 等. 微型压缩空气储能系统释能过程分析[J]. 工程热物理学报, 2014, 35(10): 1923-1929. XUE Haobai, ZHANG Xinjing, CHEN Haisheng, et al. Analysis of energy release process of micro-compressed air energy storage systems[J]. Journal of Engineering Thermophysics, 2014, 35(10): 1923-1929. [4] 肖定垚, 王承民, 依涛, 等. 压缩空气蓄能(CAES)综述[J]. 电网与清洁能源, 2014, 30(1): 75-79. XIAO Dingyao, WANG Chengmin, YI Tao, et al. Review of compressed air energy storage system[J]. Power System and Clean Energy, 2014, 30(1): 75-79. [5] 张新敬. 压缩空气储能系统若干问题的研究[D]. 北京: 中国科学院工程热物理研究所, 2011. ZHANG Xinjing. Investigation on compressed air energy storage system[D]. Beijing: Institute of Engineering Thermophysics Chinese Academy of Science, 2011. [6] 刘文毅, 张伟德. 典型压缩空气蓄能系统流程与参数优化[J]. 工程热物理学报, 2013, 34(9): 1615-1620. LIU Wenyi, ZHANG Weide. Process and parameters optimization of a typical compressed air energy storage system[J]. Journal of Engineering Thermophysics, 2013, 34(9): 1615-1620. [7] 李连生, 杨启超, 赵远扬. 微小型压缩空气储能系统研究[J]. 流体机械, 2014, 42(3): 24-27. LI Liansheng, YANG Qichao, ZHAO Yuanyang. Research on micro-small scale of compressed air energy storage system[J]. Fluid Machinery, 2014, 42(3): 24-27. [8] 刘斌, 陈来军, 梅生伟, 等. 多级回热式压缩空气储能系统效率评估方法[J]. 电工电能新技术, 2014, 33(8): 1-6. LIU Bin, CHEN Laijun, MEI Shengwei, et al. Cycle efficiency evaluation method of multi-stage RCAES system[J].Advanced Technology of Electrical Engineering and Energy, 2014, 33(8): 1-6. [9] 张淑洁. 膨胀机带发电机回收膨胀功发电原理及控制方法[J]. 电机技术, 2014(1): 46-47. ZHANG Shujie. Principle and control method of recovery expansion work of expander with generator[J]. Electrotechnics, 2014(1): 46-47. [10] WANG Jihong, LUO Xing. Scroll machine for power generation: UK 1306165.0[P]. 2013-05-04. [11] 薛小代, 梅生伟, 林其友, 等. 面向能源互联网的非补燃压缩空气储能及应用前景初探[J]. 电网技术, 2016, 40(1): 165-171. XUE Xiaodai, MEI Shengwei, LIN Qiyou, et al. Energy internet oriented non-supplementary fired compressed air energy storage and prospective of application[J]. Power System Technology, 2016, 40(1): 165-171. [12] 王成山, 武震, 杨献莘, 等. 基于微型压缩空气储能的混合储能系统建模与实验验证[J]. 电力系统自动化, 2014, 38(23): 22-26. WANG Chengshan, WU Zhen, YANG Xianshen, et al. Modeling and verification of hybrid energy storage system based on micro compressed air energy storage[J]. Automation of Electric Power Systems, 2014, 38(23): 22-26. [13] 褚晓广, 张承慧. 机械耦合式压缩空气储能风电系统涡旋机切入控制[J]. 电机与控制学报, 2014, 18(7): 79-85. CHU Xiaoguang, ZHANG Chenghui. Scroll cutting-in control of mechanical coupling compressed air energy storage wind generation system[J]. Electric Machines and Control, 2014, 18(7): 79-85. [14] 占文涛. 基于双向 PWM 变换器的微燃机发电系统起动/发电控制研究[D]. 南京: 南京航天航空大学, 2009. ZHAN Wentao. Starter and generator control research on a micro-turbine generation system based on bidirectional PWM converter[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009. [15] LUO Xing, WANG Jihong. Study of a new strategy for pneumatic actuator system energy efficiency improvement via the scroll expander technology[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(5): 1508-1518. [16] 安琪. 微小容量压缩空气储能最大效率点跟踪研究[D]. 北京: 北京交通大学, 2015. AN Qi. Research of maximum efficiency point tracking of micro-small scaled compressed air energy storage system[D]. Beijing: Beijing Jiao Tong University, 2015. [17] 褚晓广, 张承慧, 孔英, 等. 新型压缩空气储能风电系统膨胀助力控制[J]. 天津大学学报, 2014, 47(7): 601-607. CHU Xiaoguang, ZHANG Chenghui, KONG Ying, et al. Expansion assistance control of the novel wind generation system with compressed air energy storage[J]. Journal of Tianjin University, 2014, 47(7): 601-607. [18] 黄先进, 郝瑞祥, 张立伟, 等. 压缩空气与超级电容混合储能系统能量控制策略[J]. 北京交通大学学报, 2014, 38(4): 56-62. HUANG Xianjin, HAO Ruixiang, ZHANG Liwei, et al. Energy management of the hybrid energy storage system based on supercapacitors and compressed air[J]. Journal of Beijing Jiao Tong University, 2014, 38(4): 56-62. [19] 徐玉杰, 陈海生. 风光互补的压缩空气储能与发电一体化系统特性分析[J]. 中国电机工程学报, 2012, 32(20): 88-95. XU Yujie, CHEN Haisheng. Performance analysis on an integrated system of compressed air energy storage and electricity production with wind-solar complementary method[J]. Proceedings of the CSEE, 2012, 32(20): 88-95. [20] 朱明善. 工程热力学[M]. 第2版. 北京: 清华大学出版社, 2011. ZHU Mingshan. Engineering thermophysics[M]. 2nd Edition, Beijing: TsingHua University Press, 2011. [21] 陈伯时. 电力拖动自动控制系统-运动控制系统[M]. 第3版. 北京: 机械工业出版社, 2012. CHEN Boshi. Automatic control system for electric drive[M]. 3rd Edition, Beijing: China Machine Press, 2012. [22] 张兴, 张崇巍. PWM整流器及其控制[M]. 北京: 机械工业出版社, 2014. ZHANG Xing, ZHANG Chongwei. PWM rectifier and its control[M]. Beijing: China Machine Press, 2014. [23] 邹滋祥. 相似理论在叶轮机械模型研究中的应用[M]. 北京: 科学出版社, 1984. ZOU Zixiang. The application of similarity theory in the study of the mechanical model of the impeller[M]. Beijing: Science Press, 1984.
|
[1] | Shufeng DONG, Lingchong LIU, Kunjie TANG, Haiqi ZHAO, Chengsi XU, Liheng LIN. The teaching method of energy storage control experiment based on Simulink and low-code controller [J]. Energy Storage Science and Technology, 2022, 11(7): 2386-2397. |
[2] | Xiaojie YANG, Haiyun WANG, Zhongchuan JIANG, Zhanghua SONG. Bidirectional power flow strategy design of BLDC motor for flywheel energy storage [J]. Energy Storage Science and Technology, 2022, 11(7): 2233-2240. |
[3] | Yulong CHEN, Xin WU, Wei TENG, Yibing LIU. Power coordinated control strategy of flywheel energy storage array for wind power smoothing [J]. Energy Storage Science and Technology, 2022, 11(2): 600-608. |
[4] | Yanping WEI, Jun WANG, Nanfan LI, Changli SHI. Grid-connected switch control strategy suitable for energy storage converter in microgrid [J]. Energy Storage Science and Technology, 2022, 11(1): 156-163. |
[5] | Aohui ZHENG, Zheng CAO, Yujie XU, Haisheng CHEN, Jianqiang DENG. A compressed air energy storage system driving reverse osmosis desalination system [J]. Energy Storage Science and Technology, 2021, 10(5): 1597-1606. |
[6] | Yuting WU, Gege SONG, Cancan ZHANG, Zhenfeng KOU, Yuanwei LU. Optimal design of packed bed cold storage heat exchangers with solid NaClparticles in supercritical compressed air energy storage system [J]. Energy Storage Science and Technology, 2021, 10(4): 1374-1379. |
[7] | Wencan LI, Jingliang LV, Xinjian JIANG, Xinzhen ZHANG. Control method for fault ride-through of flywheel energy storage system based on multi-mode coordination [J]. Energy Storage Science and Technology, 2020, 9(6): 1905-1916. |
[8] | Zhengyi ZHAO, Baoqing YU, Deqing KONG, Haiying REN. Research on capacity configuration and control strategy of the super capacitor energy storage device for rail transit [J]. Energy Storage Science and Technology, 2020, 9(5): 1558-1561. |
[9] | LI Xiaoen, LU Ting, ZHAO Lulu, ZHOU You. Modeling and control strategy for energy storage system of micro-grid based on value stream analysis method [J]. Energy Storage Science and Technology, 2020, 9(3): 735-742. |
[10] | YANG Fengping, ZHENG Wenqi, JIN Lin, XIE Mengsha, LIU Feng. Integrated control strategy of vehicle supercapacitor energy storage system based on MMC [J]. Energy Storage Science and Technology, 2019, 8(6): 1151-1158. |
[11] | GUO Xin, ZHAO Yefei, ZHENG Junsheng, QIN Nan, DAI Ningning. Design of 48 V automobile start-stop power system based on lithium ion capacitor [J]. Energy Storage Science and Technology, 2019, 8(6): 1159-1164. |
[12] | LIU Zhen, WU Huawei, LIN Xin, SONG Panpan. Unsteady flows of a scroll expander under various types of expansion process [J]. Energy Storage Science and Technology, 2019, 8(6): 1241-1246. |
[13] | JIN Ruijiu, ZHANG Xiangfeng, WANG Zhijie. Adaptive control strategy for energy storage battery output with inconsistent performance [J]. Energy Storage Science and Technology, 2019, 8(6): 1253-1259. |
[14] | LI Ningning, SHI Changli, HE Junqiang, ZHANG Guowei. Research on control strategy of energy storage converter based on super capacitor [J]. Energy Storage Science and Technology, 2019, 8(4): 696-701. |
[15] | WU Ming, XIONG Xiong, JI Yu, DING Baodi, ZHANG Ying. Overview on multi-microgrid technologies [J]. Energy Storage Science and Technology, 2019, 8(4): 621-628. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||