Energy Storage Science and Technology ›› 2017, Vol. 6 ›› Issue (5): 924-940.doi: 10.12028/j.issn.2095-4239.2017.0073
Previous Articles Next Articles
XU Ke, WANG Baoguo
Received:
2017-05-24
Revised:
2017-07-20
Online:
2017-09-01
Published:
2017-09-01
XU Ke, WANG Baoguo. A review of air electrodes for zinc air batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 924-940.
[1] GU P, ZHENG M, ZHAO Q, et al. Rechargeable zinc-air batteries: A promising way to green energy[J]. Journal of Material Chemistry A, 2017, 5(17): 7651-7666. [2] ZHU A L, WILKINSON D P, ZHANG X, et al. Zinc regeneration in rechargeable zinc-air fuel cells—A review[J]. Journal of Energy Storage, 2016, 8: 35-50. [3] LI Y G, DAI H J. Recent advances in zinc-air batteries[J]. Chemical Society Reviews, 2014, 43(15): 5257-5275. [4] FU J, CANO Z P, PARK M G, et al. Electrically rechargeable zinc-air batteries: Progress, challenges, and perspectives[J]. Advanced Materials, 2017, 29(7): doi: 10.1002/adma.201604685. [5] CUI H, ZHOU Z, JIA D. Heteroatom-doped graphene as electrocatalysts for air cathodes[J]. Materials Horizons, 2017, 4(1): 7-19. [6] OSGOOD H, DEVAGUPTAPU S V, XU H, et al. Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media[J]. Nano Today, 2016, 11(5): 601-625. [7] 洪为臣, 马洪运, 王保国, 等. 锌-空气电池关键问题与发展趋势[J]. 化工进展, 2016, 35(6): 1713-1722. HONG Weichen, MA Hongyun, WANG Baoguo, et al. A critical review of zinc air battery: Present status and perspective[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1713-1722. [8] 洪为臣, 雷青, 王保国, 等. 锌-空气电池锌负极研究进展[J]. 化工进展, 2016, 35(2): 445-452. HONG Weichen, LEI Qing, WANG Baoguo, et al. Research status of zinc anode in zinc-air batteries[J]. Chemical Industry And Engineering Progress, 2016, 35(2): 445-452. [9] TOUSSAINT G, STEVENS P, FOURGEOT F, et al. Development of a rechargeable zinc-air battery[J]. Ecs Transactions, 2010, 28(32): 25-34. [10] LI Y, DAI H. Recent advances in zinc-air batteries[J]. Chemical Society Reviews, 2014, 43(15): 5257-5275. [11] WANG X Y, SEBASTIAN P J, SMIT M A, et al. Studies on the oxygen reduction catalyst for zinc-air battery electrode[J]. Journal of Power Sources, 2003, 124(1): 278-284. [12] WANG Y G, CHENG L, LI F, et al. High electrocatalytic performance of Mn3O4/mesoporous carbon composite for oxygen reduction in alkaline solutions[J]. Chemistry of Materials, 2007, 19(8): 2095-2101. [13] ZHU W H, POOLE B A, TATARCHUK B J, et al. New structures of thin air cathodes for zinc-air batteries[J]. Journal of Applied Electrochemistry, 2003,33: 29-36. [14] MA Z, PEI P, WANG K, et al. Degradation characteristics of air cathode in zinc air fuel cells[J]. Journal of Power Sources, 2015, 274: 56-64. [15] GAO Y, SUN G Q, WANG S L, et al. Carbon nanotubes based gas diffusion layers in direct methanol fuel cells[J]. Energy, 2010, 35(3): 1455-1459. [16] CHEN Z W, LEE D U, PARK W H, et al. Bifunctional electrode for metal-air batteries and method for producing same: Canada, US20150349325A1[P]. 2015-12-03. [17] LEE D U, CHOI J Y, FENG K, et al. Advanced extremely durable 3D bifunctional air electrodes for rechargeable zinc-air batteries[J]. Advanced Energy Materials, 2014, 4(6): 1301389. [18] BOCKELMANN M, KUNZ U, TUREK T. Electrically rechargeable zinc-oxygen flow battery with high power density[J]. Electrochemistry Communications, 2016, 69: 24-27. [19] LI X, PLETCHER D, RUSSELL A E, et al. A novel bifunctional oxygen GDE for alkaline secondary batteries[J]. Electrochemistry Communications, 2013, 34: 228-230. [20] PRICE S W T, THOMPSON S J, LI X, et al. The fabrication of a bifunctional oxygen electrode without carbon components for alkaline secondary batteries[J]. Journal of Power Sources, 2014, 259: 43-49. [21] BROST R D, WEISENSTEIN A, BROST K M, et al. Air elecrodes including perovskites: US008728671B1[P]. 2014-05-20. [22] SPENDELOW J S, WIECKOWSKI A. Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media[J]. Physical Chemistry Chemical Physics, 2007, 9(21): 2654-2675. [23] ZINOLA C, ARVIA A, ESTIU G, et al. A quantum-chemical approach to the influence of platinum surface-structure on the oxygen electroreduction reaction[J]. Journal of Physical Chemistry, 1994, 98(31): 7566-7576. [24] CAO R, LEE J S, LIU M, et al. Recent progress in non-precious catalysts for metal-air batteries[J]. Advanced Energy Materials, 2012, 2(7): 816-829. [25] WANG Z L, XU D, XU J J, et al. Oxygen electrocatalysts in metal-air batteries: From aqueous to nonaqueous electrolytes[J]. Chemical Society Reviews, 2014, 43(22): 7746-7786. [26] CHENG F, CHEN J. Metal-air batteries: From oxygen reduction electrochemistry to cathode catalysts[J]. Chemical Society Reviews, 2012, 41(6): 2172-2192. [27] LEE J S, TAI KIM S, CAO R, et al. Metal-air batteries with high energy density: Li-air versus Zn-air[J]. Advanced Energy Materials, 2011, 1(1): 34-50. [28] LEE D U, XU P, CANO Z P, et al. Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable metal-air batteries[J]. J. Mater. Chem. A, 2016, 4(19): 7107-7134. [29] NEBURCHILOV V, WANG H, MARTIN J J, et al. A review on air cathodes for zinc-air fuel cells[J]. Journal of Power Sources, 2010, 195(5): 1271-1291. [30] ŻóŁTOWSKI P, DRAŽIĆ D, VORKAPIĆ L. Carbon-air electrode with regenerative short time overload capacity: Part 1. Effect of manganese dioxide[J]. Journal of Applied Electrochemistry, 1973, 3(4): 271-283. [31] CHENG F, SU Y, LIANG J, et al. MnO2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media[J]. Chemistry of Materials, 2009, 22(3): 898-905. [32] MAO L, ZHANG D, SOTOMURA T, et al. Mechanistic study of the reduction of oxygen in air electrode with manganese oxides as electrocatalysts[J]. Electrochimica Acta, 2003, 48(8): 1015-1021. [33] LIMA F H, CALEGARO M L, TICIANELLI E A. Investigations of the catalytic properties of manganese oxides for the oxygen reduction reaction in alkaline media[J]. Journal of Electroanalytical Chemistry, 2006, 590(2): 152-160. [34] LEE J S, LEE T, SONG H K, et al. Ionic liquid modified graphene nanosheets anchoring manganese oxide nanoparticles as efficient electrocatalysts for Zn-air batteries[J]. Energy & Environmental Science, 2011, 4(10): 4148. [35] LEE J S, PARK G S, LEE H I, et al. Ketjenblack carbon supported amorphous manganese oxides nanowires as highly efficient electrocatalyst for oxygen reduction reaction in alkaline solutions[J]. Nano Letters, 2011, 11(12): 5362-5366. [36] SIDIK R A, ANDERSON A B, SUBRAMANIAN N P, et al. O2 reduction on graphite and nitrogen-doped graphite: Experiment and theory[J]. The Journal of Physical Chemistry B, 2006, 110(4): 1787-1793. [37] ZHENG Y, JIAO Y, JARONIEC M, et al. Nanostructured metal-free electrochemical catalysts for highly efficient oxygen reduction[J]. Small, 2012, 8(23): 3550-3566. [38] SI Y, PARK M G, CANO Z P, et al. Heavily nitrogen-doped acetylene black as a high-performance catalyst for oxygen reduction reaction[J]. Carbon, 2017, 117: 12-19. [39] ZHU S, CHEN Z, LI B, et al. Nitrogen-doped carbon nanotubes as air cathode catalysts in zinc-air battery[J]. Electrochimica Acta, 2011, 56(14): 5080-5084. [40] PARK G S, LEE J S, KIM S T, et al. Porous nitrogen doped carbon fiber with churros morphology derived from electrospun bicomponent polymer as highly efficient electrocatalyst for Zn-air batteries[J]. Journal of Power Sources, 2013, 243: 267-273. [41] SUN Y, LI C, SHI G. Nanoporous nitrogen doped carbon modified graphene as electrocatalyst for oxygen reduction reaction[J]. Journal of Materials Chemistry, 2012, 22(25): 12810. [42] LIANG H W, ZHUANG X, BRULLER S, et al. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction[J]. Nat. Commun., 2014, 5: 4973. [43] JIA Z, WANG B, WANG Y, et al. Hierarchical porous nitrogen doped reduced graphene oxide prepared by surface decoration-thermal treatment method as high-activity oxygen reduction reaction catalyst and high-performance supercapacitor electrodes[J]. Rsc Advances, 2016, 6(55): 49497-49504. [44] YANG L, JIANG S, ZHAO Y, et al. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction[J]. Angew. Chem. Int. Ed. Engl., 2011, 50(31): 7132-7135. [45] LIU Y, CHEN S, QUAN X, et al. Boron and nitrogen codoped nanodiamond as an efficient metal-free catalyst for oxygen reduction reaction[J]. The Journal of Physical Chemistry C, 2013, 117(29): 14992-14998. [46] YANG Z, YAO Z, LI G, et al. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction [J]. Acs Nano, 2012, 6(1): 205-211. [47] WU J, JIN C, YANG Z, et al. Synthesis of phosphorus-doped carbon hollow spheres as efficient metal-free electrocatalysts for oxygen reduction[J]. Carbon, 2015, 82, 562-571. [48] WU G, ZELENAY P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction[J]. Accounts of Chemical Research, 2013, 46(8): 1878-1889. [49] WU G, MORE K L, JOHNSTON C M, et al. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt[J]. Science, 2011, 332(6028): 443-447. [50] LI Y, ZHOU W, WANG H, et al. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes[J]. Nature Nanotechnology, 2012, 7(6): 394-400. [51] THORUM M S, HANKETT J M, GEWIRTH A A. Poisoning the oxygen reduction reaction on carbon-supported Fe and Cu electrocatalysts: Evidence for metal-centered activity[J]. The Journal of Physical Chemistry Letters, 2011, 2(4): 295-298. [52] FERRANDON M, KROPF A J, MYERS D J, et al. Multitechnique characterization of a polyaniline-iron-carbon oxygen reduction catalyst[J]. The Journal of Physical Chemistry C, 2012, 116(30): 16001-16013. [53] WANG J, WU H, GAO D, et al. High-density iron nanoparticles encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for zinc-air battery[J]. Nano Energy, 2015, 13: 387-396. [54] LI ZHU A, WANG H, QU W, et al. Low temperature pyrolyzed cobalt tetramethoxy phenylporphyrin catalyst and its applications as an improved catalyst for metal air batteries[J]. Journal of Power Sources, 2010, 195(17): 5587-5595. [55] CHEN Z, CHOI J Y, WANG H, et al. Highly durable and active non-precious air cathode catalyst for zinc air battery[J]. Journal of Power Sources, 2011, 196(7): 3673-3677. [56] WU H, LI H, ZHAO X, et al. Highly doped and exposed Cu(I)–N active sites within graphene towards efficient oxygen reduction for zinc-air batteries[J]. Energy. Environ. Sci., 2016, 9(12): 3736-3745. [57] HAN J J, LI N, ZHANG T Y. Ag/C nanoparticles as an cathode catalyst for a zinc-air battery with a flowing alkaline electrolyte[J]. Journal of Power Sources, 2009, 193(2): 885-889. [58] LI Y, GONG M, LIANG Y, et al. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts[J]. Nat. Commun., 2013, 4: 1-7. [59] MA C, XU N, QIAO J, et al. Facile synthesis of NiCo2O4 nanosphere-carbon nanotubes hybrid as an efficient bifunctional electrocatalyst for rechargeable Zn-air batteries[J]. International Journal of Hydrogen Energy, 2016, 41(21): 9211-9218. [60] TWEED K. Eos Energy Storage Closes $23M Funding Round for Cheap Grid Batteries[EB/OL]. http://www.greentechmedia.com/ articles/read/eos-energy-storage-closes-23m-funding-round. [61] RIOS E, GAUTIER J L, POILLERAT G, et al. Mixed valency spinel oxides of transition metals and electrocatalysis: Case of the MnxCo3xO4 system[J]. Electrochimica Acta, 1998, 44(8): 1491-1497. [62] PRABU M, KETPANG K, SHANMUGAM S. Hierarchical nanostructured NiCo2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc-air batteries[J]. Nanoscale, 2014, 6(6): 3173-3181. [63] SUNTIVICH J, GASTEIGER H A, YABUUCHI N, et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries[J]. Nature Chemistry, 2011, 3(7): 546-550. [64] CHEN Z, YU A, AHMED R, et al. Manganese dioxide nanotube and nitrogen-doped carbon nanotube based composite bifunctional catalyst for rechargeable zinc-air battery[J]. Electrochimica Acta, 2012, 69: 295-300. [65] MA H, WANG B. A bifunctional electrocatalyst α-MnO2-LaNiO3/ carbon nanotube composite for rechargeable zinc-air batteries[J]. Rsc Advances, 2014, 4(86): 46084-46092. [66] MA H, WANG B, FAN Y, et al. Development and characterization of an electrically rechargeable zinc-air battery stack[J]. Energies, 2014, 7(10): 6549-6557. [67] PARK M G, LEE D U, SEO M H, et al. 3D ordered mesoporous bifunctional oxygen catalyst for electrically rechargeable zinc-air batteries[J]. Small, 2016, 12(20): 2707-2714. [68] CHEN Z, YU A, HIGGINS D, et al. Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application[J]. Nano Letters, 2012, 12(4): 1946-1952. [69] LIANG Y, LI Y, WANG H, et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction[J]. Nature Materials, 2011, 10(10): 780-786. [70] PRABU M, RAMAKRISHNAN P, SHANMUGAM S. CoMn2O4 nanoparticles anchored on nitrogen-doped graphene nanosheets as bifunctional electrocatalyst for rechargeable zinc-air battery[J]. Electrochemistry Communications, 2014, 41: 59-63. [71] FU G, CHEN Y, CUI Z, et al. Novel hydrogel-derived bifunctional oxygen electrocatalyst for rechargeable air cathodes[J]. Nano Letters, 2016, 16(10): 6516-6522. [72] DU G, LIU X, ZONG Y, et al. Co3O4 nanoparticle-modified MnO2 nanotube bifunctional oxygen cathode catalysts for rechargeable zinc-air batteries[J]. Nanoscale, 2013, 5(11): 4657-4661. [73] WANG Z, XIAO S, AN Y, et al. Co(II)1xCo(0)x/3Mn(III)2x/3S nanoparticles supported on B/N-codoped mesoporous nanocarbon as a bifunctional electrocatalyst of oxygen reduction/evolution for high-performance zinc-air batteries[J]. Acs Applied Materials & Interfaces, 2016, 8(21): 13348-13359. [74] MüLLER S, STRIEBEL K, HAAS O. La0.6Ca0.4CoO3: A stable and powerful catalyst for bifunctional air electrodes[J]. Electrochimica Acta, 1994, 39(11-12): 1661-1668. [75] JIN C, CAO X, ZHANG L, et al. Preparation and electrochemical properties of urchin-like La0.8Sr0.2MnO3 perovskite oxide as a bifunctional catalyst for oxygen reduction and oxygen evolution reaction[J]. Journal of Power Sources, 2013, 241: 225-230. [76] WANG J, WU H, GAO D, et al. High-density iron nanoparticles encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for zinc-air battery[J]. Nano Energy, 2015, 13: 387-396. [77] JUNG K N, JUNG J H, IM W B, et al. Doped lanthanum nickelates with a layered perovskite structure as bifunctional cathode catalysts for rechargeable metal-air batteries[J]. Acs Applied Materials & Interfaces, 2013, 5(20): 9902-9907. [78] LIU X, LIU W, KO M, et al. Metal (Ni, Co)-metal oxides/graphene nanocomposites as multifunctional electrocatalysts[J]. Advanced Functional Materials, 2015, 25(36): 5799-5808. [79] 洪为臣. 锌-空气电池负极与单电池结构研究[D]. 北京: 清华大学, 2016. HONG Weichen. Research on anode and single cell structure of zinc-air batteries[D]. Beijing: Tsinghua University, 2016. [80] HONG W. A Horizontal three-electrode structure for zinc-air batteries with long-term cycle life and high performance[J]. International Journal of Electrochemical Science, 2016: 3843-3851. [81] HONG W C, JIA Z J, WANG B G. Influence of cathodic overpotential and zincate concentration on zinc deposition in alkaline solution[J]. Journal of Applied Electrochemistry, 2016, 46(10): 1085-1090. [82] PARK S, LEE J-W, POPOV B N. A review of gas diffusion layer in PEM fuel cells: Materials and designs[J]. International Journal of Hydrogen Energy, 2012, 37(7): 5850-5865. [83] FU J, HASSAN F M, LI J, et al. Flexible rechargeable zinc-air batteries through morphological emulation of human hair array[J]. Advanced Materials, 2016, 28(30): 6421-6428. [84] TIAN J, LIU Q, CHENG N, et al. Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water[J]. Angewandte Chemie International Edition, 2014, 53(36): 9577-9581. [85] MA T Y, CAO J L, JARONIEC M, et al. Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution[J]. Angewandte Chemie International Edition, 2016, 55(3): 1138-1142. [86] XU Y, ZHANG Y, GUO Z, et al. Flexible, stretchable, and rechargeable fiber-shaped zinc-air battery based on cross-stacked carbon nanotube sheets[J]. Angewandte Chemie International Edition, 2015, 54(51): 15390-15394. [87] ZHANG J, QU L, SHI G, et al. N,P-codoped carbon networks as efficient metal-free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions[J]. Angewandte Chemie International Edition, 2016, 55(6): 2230-2234. [88] SUMBOJA A, GE X, GOH F W T, et al. Manganese oxide catalyst grown on carbon paper as an air cathode for high-performance rechargeable zinc-air batteries[J]. ChemPlusChem, 2015, 80(8): 1341-1346. [89] MA T Y, DAI S, QIAO S Z. Self-supported electrocatalysts for advanced energy conversion processes[J]. Materials Today, 2016, 19(5): 265-273. [90] WU X, CHEN F, JIN Y, et al. Silver-copper nanoalloy catalyst layer for bifunctional air electrodes in alkaline media[J]. Acs Applied Materials & Interfaces, 2015, 7(32): 17782-17791. [91] MENG F, ZHONG H, BAO D, et al. In situ coupling of strung Co4N and intertwined N-C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn-air batteries[J]. J. Am. Chem. Soc., 2016, 138(32): 10226-10231. [92] MA T Y, RAN J, DAI S, et al. Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: Flexible and reversible oxygen electrodes[J]. Angewandte Chemie International Edition, 2015, 54(15): 4646-4650. [93] LI B, GE X, GOH F W, et al. Co3O4 nanoparticles decorated carbon nanofiber mat as binder-free air-cathode for high performance rechargeable zinc-air batteries[J]. Nanoscale, 2015, 7(5): 1830-1838. [94] CHEN S, DUAN J, BIAN P, et al. Three-dimensional smart catalyst electrode for oxygen evolution reaction[J]. Advanced Energy Materials, 2015, 5(18): 1500936. [95] LI B, QUAN J, LOH A, et al. A robust hybrid Zn-battery with ultralong cycle life[J]. Nano Letters, 2017, 17(1): 156-163. |
[1] | WANG Peican, WAN Lei, XU Ziang, XU Qin, PANG Maobin, CHEN Jinxun, WANG Baoguo. Interface engineering of self-supported electrode for electrochemical water splitting [J]. Energy Storage Science and Technology, 2022, 11(6): 1934-1946. |
[2] | Jianxin CHEN, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Study on nickel-based nanoparticles supported by biomass carbon for electrocatalytic hydrogen evolution [J]. Energy Storage Science and Technology, 2022, 11(5): 1350-1357. |
[3] | Yezhou HU, Shuang WANG, Tao SHEN, Ye ZHU, Deli WANG. Recent progress in confined noble-metal electrocatalysts for oxygen reduction reaction [J]. Energy Storage Science and Technology, 2022, 11(4): 1264-1277. |
[4] | Mingchang HU, Xueqing ZHOU, Xueyan HUANG, Jianjun XUE. Solvent-free fabrication of zinc-air electrodes and their battery performance [J]. Energy Storage Science and Technology, 2021, 10(6): 2090-2096. |
[5] | Shenzhi ZHANG, Likai WANG, Yinggang SUN, Heng LÜ, Ziyin YANG, Leilei LI, Zhongfang LI. Construction of two dimensional carbon-supported Au4Pd2 catalysts and their electrocatalytic performances [J]. Energy Storage Science and Technology, 2021, 10(6): 2028-2038. |
[6] | Wenwu ZOU, Guoxing JIANG, Li DU. Recent advances in covalent organic frameworks (COFs) for electrocatalysis of oxygen electrodes [J]. Energy Storage Science and Technology, 2021, 10(6): 1891-1905. |
[7] | Shishi ZHANG, Yanyang QIN, Yaqiong SU. Activity origin of single/double-atom catalyst for hydrogen evolution reaction [J]. Energy Storage Science and Technology, 2021, 10(6): 2008-2012. |
[8] | Yuexia LI, Quanbing LIU. Application of MXene-based nanomaterials in electrocatalysis for oxygen reduction reaction [J]. Energy Storage Science and Technology, 2021, 10(6): 1918-1930. |
[9] | Ziyue ZHU, Dongju FU, Jianjun CHEN, Bianrong ZENG. Research progress of non-precious metal bifunctional cathode electrocatalysts for zinc-air batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1489-1496. |
[10] | CHEN Xiang, LEI Kaixiang, SUN Hongming, CHENG Fangyi, CHEN Jun. Spinel-type transition metal oxide electrocatalysts for metal-air batteries [J]. Energy Storage Science and Technology, 2017, 6(5): 904-923. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||