Energy Storage Science and Technology ›› 2017, Vol. 6 ›› Issue (5): 941-951.doi: 10.12028/j.issn.2095-4239.2017.0087
Previous Articles Next Articles
DUAN Hui1,2, YIN Yaxia1,2, GUO Yuguo1,2, WAN Lijun1,2
Received:
2017-06-01
Revised:
2017-07-07
Online:
2017-09-01
Published:
2017-09-01
About author:
段惠(1989—),女,博士研究生,研究方向为锂电池固态电解质,E-mail:duanhui14@iccas.ac.cn
DUAN Hui1,2, YIN Yaxia1,2, GUO Yuguo1,2, WAN Lijun1,2. Research progress on solid-state lithium metal batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 941-951.
[1] JANEK J, ZEIER W G. A solid future for battery development[J]. Nature Energy, 2016, 1(9): 16141. [2] ZHANG R, LI N W, CHENG X B, et al. Advanced micro/ nanostructures for lithium metal anodes[J]. Advanced Science, 2017, 4(3): doi: 10.1002/advs.201600445. [3] MANTHIRAM A, YU X, WANG S. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2: doi: 10.1038 / natrevmats.2016.103. [4] ZHU Y, HE X, MO Y. First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(9): 3253-3266. [5] STRAMARE S, THANGADURAI V, WEPPNER W. Lithium lanthanum titanates: A review[J]. Chemistry of Materials, 2003, 15(21): 3974-3990. [6] KHAN W, RESHAK A H. Specific features of Li5La3M2O12 (M=Nb, Ta) single crystals: Electrolyte for solid states batteries[J]. Science of Advanced Materials, 2014, 6(8): 1716-1726. [7] ZHAO Y, DAEMEN L L. Superionic conductivity in lithium-rich anti-perovskites[J]. Journal of the American Chemical Society, 2012, 134(36): 15042-15047. [8] HOOD Z D, WANG H, SAMUTHIRA PANDIAN A, et al. Li2OHCl crystalline electrolyte for stable metallic lithium anodes[J]. Journal of the American Chemical Society, 2016, 138(6): 1768-1771. [9] LI Y, ZHOU W, XIN S, et al. Fluorine-doped antiperovskite electrolyte for all-solid-state lithium-ion batteries[J]. Angewandte Chemie International Edition, 2016, 55(34): 9965-9968. [10] MA C, CHEN K, LIANG C, et al. Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes[J]. Energy & Environmental Science, 2014, 7(5): 1638- 1642. [11] MA C, CHENG Y, CHEN K, et al. Mesoscopic framework enables facile ionic transport in solid electrolytes for Li batteries[J]. Advanced Energy Materials, 2016, 6(11): doi: 10.1002/aenm. 201600053. [12] LUNTZ A C, VOSS J, REUTER K. Interfacial challenges in solid-state Li ion batteries[J]. The Journal of Physical Chemistry Letters, 2015, 6(22): 4599-4604. [13] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686. [14] SEINO Y, OTA T, TAKADA K, et al. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries[J]. Energy & Environmental Science, 2014, 7(2): 627-631. [15] KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1(4): doi:10.1038/nenergy.2016.30. [16] WAN H, PENG G, YAO X, et al. Cu2ZnSnS4/graphene nanocomposites for ultrafast, long life all-solid-state lithium batteries using lithium metal anode[J]. Energy Storage Materials, 2016, 4: 59-65. [17] YAO X, LIU D, WANG C, et al. High-energy all-solid-state lithium batteries with ultralong cycle life[J]. Nano Letters, 2016, 16(11): 7148-7154. [18] YAO X, HUANG N, HAN F, et al. High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes[J]. Advanced Energy Materials, 2017, doi: 10.1002/aenm.201602923. [19] MURUGAN R, THANGADURAI V, WEPPNER W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J]. Angewandte Chemie International Edition, 2007, 46(41): 7778-7781. [20] BUSCHMANN H, BERENDTS S, MOGWITZ B, et al. Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors “Li7La3Zr2O12” and Li7−xLa3Zr2−xTaxO12 with garnet-type structure[J]. Journal of Power Sources, 2012, 206: 236-244. [21] LI Y, CAO Y, GUO X. Influence of lithium oxide additives on densification and ionic conductivity of garnet-type Li6.75La3Zr1.75 Ta0.25O12 solid electrolytes[J]. Solid State Ionics, 2013, 253: 76-80. [22] BERNUY-LOPEZ C, MANALASTAS W, LOPEZ DEL AMO J M, et al. Atmosphere controlled processing of ga-substituted garnets for high Li-ion conductivity ceramics[J]. Chemistry of Materials, 2014, 26(12): 3610-3617. [23] ZHU Y, HE X, MO Y. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations[J]. ACS Applied Materials & Interfaces, 2015, 7(42): 23685-23693. [24] CHENG L, CRUMLIN E J, CHEN W, et al. The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes[J]. Physical Chemistry Chemical Physics, 2014, 16(34): 18294-18300. [25] LI Y, HAN J T, VOGEL S C, et al. The reaction of Li6.5La3Zr1.5Ta0.5O12 with water[J]. Solid State Ionics, 2015, 269: 57-61. [26] LI Y, XU B, XU H, et al. Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries[J]. Angewandte Chemie International Edition, 2017, 129(3): 771-774. [27] LUO W, GONG Y, ZHU Y, et al. Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte[J]. Journal of the American Chemical Society, 2016, 138(37): 12258-12262. [28] TSAI C L, RODDATIS V, CHANDRAN C V, et al. Li7La3Zr2O12 interface modification for Li dendrite prevention[J]. ACS Applied Materials & Interfaces, 2016, 8(16): 10617-10626. [29] CHEN R J, ZHANG Y B, LIU T, et al. Addressing the interface issues in all-solid-state bulk-type lithium ion battery via an all-composite approach[J]. ACS Applied Materials & Interfaces, 2017, 9(11): 9654-9661. [30] LIANG Z, LIN D, ZHAO J, et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating[J]. Proceedings of the National Academy of Sciences, 2016, 113(11): 2862-2867. [31] HAN X, GONG Y, FU K, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries[J]. Nature Materials, 2016, 16(5): 572-579. [32] WANG C, GONG Y, LIU B, et al. Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes[J]. Nano Letters, 2016, 17(1): 565-571. [33] FU K, GONG Y, LIU B, et al. Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface[J]. Science Advances, 2017, 3(4): doi: 10.1126/sciadv.1601659. [34] LUO W, GONG Y, ZHU Y, et al. Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer[J]. Advanced Materials, 2017, doi: 10.1002/ adma.201606042. [35] VAN DEN BROEK J, AFYON S, RUPP J L M. Interface-engineered all-solid-state li-ion batteries based on garnet-type fast Li+ conductors[J]. Advanced Energy Materials, 2016, 6(19): doi: 10.1002/aenm.201600736. [36] KIM D H, OH D Y, PARK K H, et al. Infiltration of solution-processable solid electrolytes into conventional Li-ion- battery electrodes for all-solid-state Li-ion batteries[J]. Nano Letters, 2017, 17(5): 3013-3020. [37] PARK K, YU B C, JUNG J W, et al. Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: Interface between LiCoO2 and garnet-Li7La3Zr2O12[J]. Chemistry of Materials, 2016, 28(21): 8051-8059. [38] KATO T, HAMANAKA T, YAMAMOTO K, et al. In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery[J]. Journal of Power Sources, 2014, 260: 292-298. [39] BEST A S, FORSYTH M, MACFARLANE D R. Stoichiometric changes in lithium conducting materials based on Li1+xAlxTi2−x(PO4)3: Impedance, X-ray and NMR studies[J]. Solid State Ionics, 2000, 136/137: 339-344. [40] XU X, WEN Z, YANG X, et al. High lithium ion conductivity glass-ceramics in Li2O-Al2O3-TiO2-P2O5 from nanoscaled glassy powders by mechanical milling[J]. Solid State Ionics, 2006, 177(26/27/28/29/30/31/32): 2611-2615. [41] MARIAPPAN C R, GELLERT M, YADA C, et al. Grain boundary resistance of fast lithium ion conductors: Comparison between a lithium-ion conductive Li-Al-Ti-P-O-type glass ceramic and a Li1.5Al0.5Ge1.5P3O12 ceramic[J]. Electrochemistry Communications, 2012, 14(1): 25-28. [42] BEST A S, NEWMAN P J, MACFARLANE D R, et al. Characterisation and impedance spectroscopy of substituted Li1.3Al0.3Ti1.7(PO4)3−x(ZO4)x (Z=V, Nb) ceramics[J]. Solid State Ionics, 1999, 126(1/2): 191-196. [43] DING F, XU W, SHAO Y, et al. H+ diffusion and electrochemical stability of Li1+x+yAlxTi2−xSiyP3−yO12 glass in aqueous Li/air battery electrolytes[J]. Journal of Power Sources, 2012, 214: 292-297. [44] HASEGAWA S, IMANISHI N, ZHANG T, et al. Study on lithium/air secondary batteries-Stability of NASICON-type lithium ion conducting glass-ceramics with water[J]. Journal of Power Sources, 2009, 189(1): 371-377. [45] WANG Q, WEN Z, JIN J, et al. A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries[J]. Chemical Communications, 2016, 52(8): 1637-1640. [46] ZHOU W, WANG S, LI Y, et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte[J]. Journal of the American Chemical Society, 2016, 138(30): 9385-9388. [47] BUCUR C B, LITA A, OSADA N, et al. A soft, multilayered lithium-electrolyte interface[J]. Energy & Environmental Science, 2016, 9(1): 112-116. [48] KHURANA R, SCHAEFER J L, ARCHER L A, et al. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: A new approach for practical lithium-metal polymer batteries[J]. Journal of the American Chemical Society, 2014, 136(20): 7395-7402. [49] BATES C M, CHANG A B, MOMČILOVIĆ N, et al. ABA triblock brush polymers: Synthesis, self-assembly, conductivity, and rheological properties[J]. Macromolecules, 2015, 48(14): 4967-4973. [50] ZHANG J, ZHAO J, YUE L, et al. Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries[J]. Advanced Energy Materials, 2015, 5(24): doi: 10.1002/aenm.201501082. [51] ZHOU D, HE Y B, LIU R, et al. In situ synthesis of a hierarchical all-solid-state electrolyte based on nitrile materials for high-performance lithium-ion batteries[J]. Advanced Energy Materials, 2015, 5(15): doi:10.1002/aenm.201500353. [52] ZENG X X, YIN Y X, LI N W, et al. Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid li metal batteries[J]. Journal of the American Chemical Society, 2016, 138(49): 15825-15828. [53] LU Q, HE Y B, YU Q, et al. Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte[J]. Advanced Materials, 2017, doi:10.1002/adma.201604460. [54] CHAI J, LIU Z, MA J, et al. In situ generation of poly (vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries[J]. Advanced Science, 2016, 4(2): doi: 10.1002/advs.201600377. [55] ZHANG H, LI C, PISZCZ M, et al. Single lithium-ion conducting solid polymer electrolytes: Advances and perspectives[J]. Chemical Society Reviews, 2017, 46(3): 797-815. [56] MA Q, ZHANG H, ZHOU C, et al. Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion[J]. Angewandte Chemie-International Edition, 2016, 55(7): 2521-2525. [57] KUMAR B, FELLNER J P. Polymer-ceramic composite protonic conductors[J]. Journal of Power Sources, 2003, 123(2): 132-136. [58] ZHU Z, HONG M, GUO D, et al. All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode[J]. Journal of the American Chemical Society, 2014, 136(47): 16461-16464. [59] LIU W, LIN D, SUN J, et al. Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires[J]. ACS Nano, 2016, 10(12): 11407-11413. [60] LIN D, LIU W, LIU Y, et al. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide)[J]. Nano Letters, 2016, 16(1): 459-465. [61] ZHENG J, TANG M, HU Y Y. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes[J]. Angewandte Chemie International Edition, 2016, 55(40): 12538- 12542. [62] TAO X, LIU Y, LIU W, et al. Solid-state lithium-sulfur batteries operated at 37 ℃ with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer[J]. Nano Letters, 2017, doi: 10.1021/acs.nanolett.7b00221. [63] NAM Y J, CHO S J, OH D Y, et al. Bendable and thin sulfide solid electrolyte film: A new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries[J]. Nano Letters, 2015, 15(5): 3317-3323. [64] LIU W, LIU N, SUN J, et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers[J]. Nano Letters, 2015, 15(4): 2740-2745. [65] LIU W, LEE S W, LIN D, et al. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires[J]. Nature Energy, 2017, 2: doi: 10.1038/nenergy.2017.35. [66] FU K, GONG Y, DAI J, et al. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(26): 7094-7099. [67] ZHAI H, XU P, NING M, et al. A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries[J]. Nano Letters, 2017, doi: 10.1021/acs.nanolett.7b00715. [68] CHOUDHURY S, MANGAL R, AGRAWAL A, et al. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles[J]. Nature Communication, 2015, 6: doi: 10.1038/ncomms10101. [69] PAN Q, SMITH D M, QI H, et al. Hybrid electrolytes with controlled network structures for lithium metal batteries[J]. Advanced Materials, 2015, 27(39): 5995-6001. |
[1] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[2] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[3] | Suting WENG, Zepeng LIU, Gaojing YANG, Simeng ZHANG, Xiao ZHANG, Qiu FANG, Yejing LI, Zhaoxiang WANG, Xuefeng WANG, Liquan CHEN. Cryogenic electron microscopy (cryo-EM) characterizing beam-sensitive materials in lithium metal batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 760-780. |
[4] | Zhiwei ZHAO, Zhi YANG, Zhangquan PENG. Application of time-of-flight secondary ion mass spectrometry in lithium-based rechargeable batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 781-794. |
[5] | Shiwei DENG, Jianfang WU, Tuo SHI. Defect chemistry analysis of solid electrolytes: Point defects in grain bulk and grain boundary space-charge layer [J]. Energy Storage Science and Technology, 2022, 11(3): 939-947. |
[6] | Zhao DU, Kang YANG, Gao SHU, Pan WEI, Xiaohu YANG. Experimental Study on the Heat Storage and Release of the Solid-Liquid Phase Change in Metal-Foam-Filled Tube [J]. Energy Storage Science and Technology, 2022, 11(2): 531-537. |
[7] | Zhuo XU, Lili ZHENG, Bing CHEN, Tao ZHANG, Xiuling CHANG, Shouli WEI, Zuoqiang DAI. Overview of research on composite electrolytes for solid-state batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2117-2126. |
[8] | Dangling LIU, Shimin WANG, Zhihui GAO, Lufu XU, Shubiao XIA, Hong GUO. Properties of three-dimensional NZSPO/PAN-[PEO-NATFST] sodium-battery-composite solid electrolyte [J]. Energy Storage Science and Technology, 2021, 10(3): 931-937. |
[9] | Shangsen CHI, Yidong JIANG, Qingrong WANG, Ziwei YE, Kai YU, Jun MA, Jun JIN, Jun WANG, Chaoyang WANG, Zhaoyin WEN, Yonghong DENG. The liquid electrolyte modified interface between garnet-type solid-state electrolyte and lithium anode [J]. Energy Storage Science and Technology, 2021, 10(3): 914-924. |
[10] | Saisai ZHANG, Hailei ZHAO. Electrode/electrolyte interfaces in Li7La3Zr2O12 garnet-based solid-state lithium metal battery: Challenges and progress [J]. Energy Storage Science and Technology, 2021, 10(3): 863-871. |
[11] | Yanming CUI, Zhihua ZHANG, Yuanqiao HUANG, Jiu LIN, Xiayin YAO, Xiaoxiong XU. Prototype all-solid-state battery electrodes preparation and assembly technology [J]. Energy Storage Science and Technology, 2021, 10(3): 836-847. |
[12] | Xinxin ZHU, Wei JIANG, Zhengwei WAN, Shu ZHAO, Zeheng LI, Liguang WANG, Wenbin NI, Min LING, Chengdu LIANG. Research progress in electrolyte and interfacial issues of solid lithium sulfur batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 848-862. |
[13] | Peng ZHANG, Xingqiang LAI, Junrong SHEN, Donghai ZHANG, Yongheng YAN, Rui ZHANG, Jun SHENG, Kangwei DAI. Research and industrialization progress of solid-state lithium battery [J]. Energy Storage Science and Technology, 2021, 10(3): 896-904. |
[14] | Xie WU, Li ZHOU, Zhaoming XUE. Synthesis and performance of solid polymer electrolytes based on chelated boron lithium salts [J]. Energy Storage Science and Technology, 2021, 10(1): 96-103. |
[15] | Xi LI, Yajuan YU, Zhiqi ZHANG, Lei WANG, Kai HUANG. Advance and patent analysis of solid electrolyte in solid-state lithium batteries [J]. Energy Storage Science and Technology, 2021, 10(1): 77-86. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||