[1] TARASCON J M, ARMAND M. Building better batteries[J]. Nature, 2008, 451:652-657.
[2] GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery:A perspective[J]. Journal of the American Chemical Society, 2013, 1359 (4):1167-1176.
[3] LI J, DANIEL C, WOOD D L. Materials processing for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196:2452-2460.
[4] KWON T W, CHOI J W, COSKUN A. The emerging era of supramolecular polymeric binders in silicon anodes[J]. Chemical Society Reviews, 2018, 47:2145-2164.
[5] HAN X, ZHANG Z Q, YOU R, et al. Capitalization of interfacial AlON interactions to achieve stable binder-free porous silicon/carbon anodes[J]. Journal of Materials Chemistry A, 2018, 6:7449-7456.
[6] LI D W, WANG Y K, HU J Z. et al. Role of polymeric binders on mechanical behavior and cracking resistance of silicon composite electrodes during electrochemical cycling[J]. Journal of Power Sources, 2018, 387:9-15.
[7] JUNG C H, CHOI J, KIM W S, et al. A nanopore-embedded graphitic carbon shell on silicon anode for high performance lithium ion batteries[J]. Journal of Materials Chemistry A, 2018, 6:8013-8020.
[8] DOSE W M, PIERNAS-MUNOZ M J, MARONI V A, et al. Capacity fade in high energy silicon-graphite electrodes for lithium-ion batteriess[J]. Chemical Communications, 2018, 54:3586-3589.
[9] MENDEZ J P, PONGA M, ORTIZ M. Diffusive molecular dynamics simulations of lithiation of silicon nanopillars[J]. Journal of the Mechanics and Physics of Solids, 2015, 115:123-141.
[10] JANG K H, HYUN Y, PARK Y H, et al. Synthesis of carbon nanofibers and silicon-carbon nanofiber composites on electroplated Co-Ni/C-fiber textiles for anode material of Li ion batteries[J]. Journal of Nanoscience and Nanotechnology, 2017, 17 (11):8500-8505.
[11] HOROWITZ Y, HAN H L, SOTO F A, et al. Fluoroethylene carbonate as a directing agent in amorphous silicon anodes:electrolyte interface structure probed by sum frequency vibrational spectroscopy and Ab initio molecular dynamics[J]. Nano Letters, 2018, 18:1145-1151.
[12] KARKAR Z, GUYOMARD D, ROUE L, et al. A comparative study of polyacrylic acid (PAA) and carboxymethyl cellulose (CMC) binders for Si-based electrodes[J]. Electrochimica Acta, 2017, 258:453-466.
[13] HAYSA K A, RUTHERA R E, KUKAYA A J, et al. What makes lithium substituted polyacrylic acid a better binder than polyacrylic acid for silicon-graphite composite anodes?[J]. Journal of Power Sources, 2018, 384:136-144.
[14] CHOI S, KWON T W, COSKUN A, et al. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries[J]. Science, 2017, 357:279-283.
[15] LUO L, XU Y L, ZHANG H, et al. Comprehensive understanding of high polar polyacrylonitrile as an effective binder for Li-ion battery nano-Si anodes[J]. ACS Applied Materials & Interfaces, 2016, 8 (12):8154-8161.
[16] CHOI J, KIM K, JEONG J, et al. Highly adhesive and soluble copolyimide binder:improving the long-term cycle life of silicon anodes in lithium-ion batteries[J]. Applied Materials & Interfaces, 2015, 7:14851-14858.
[17] YOON T, CHAPMAN N, NGUYEN C C, et al. Electrochemical reactivity of polyimide and feasibility as a conductive binder for silicon negative electrodes[J]. Journal of Materials Science, 2017, 52:3613-3621
[18] YAO D H, YANG Y, DENG Y H, et al. Flexible polyimides through one-pot synthesis as water-soluble binders for silicon anodes in lithium ion batterie[J]. Journal of Power Sources, 2018, 379:26-32.
[19] LIU J, ZHANG Q, WU Z Y, et al. A high-performance alginate hydrogel binder for the Si/C anode of a Li-ion battery[J]. Chemical Communications, 2014, 50:6386-6389.
[20] GU Y Y, YANG S M, ZHU G B, et al. The effects of cross-linking cations on the electrochemical behavior of silicon anodes with alginate binder[J]. Electrochimica Acta, 2018, 269:405-414.
[21] BIE Y, YANG J, NULI Y, et al. Oxidized starch as a superior binder for silicon anodes in lithium-ion batteries[J]. RSC Advance, 2016, 6:97084-97088.
[22] KURUBAL R, DATTA M K, DAMODARAN K, et al. Guar gum:Structural and electrochemical characterization of natural polymer based binder for silicon-carbon composite rechargeable Li-ion battery anodes[J]. Journal of Power Sources, 2015, 298:331-340
[23] LIU D, ZHAO Y, TAN R, et al. Novel conductive binder for high-performance silicon anodes in lithium ion batteries[J]. Nano Energy, 2017, 36:206-212.
[24] ZHOU M, LI X L, WANG B, et al. High-performance silicon battery anodes enabled by engineering graphene assemblies Nano Letter, 2015, 15:6222-6228. |