[1] LIU W, SONG M S, KONG B, et al. Flexible and stretchable energy storage:Recent advances and future perspectives[J]. Advanced Materials, 2017, 29 (1):1603436.
[2] YANG Z, DENG J, CHEN X, et al. A highly stretchable, fiber-shaped supercapacitor[J]. Angewandte Chemie, 2013, 125 (50):13695-13699.
[3] 张熙悦, 张昊喆, 林子琦, 等. 基于碳材料的可伸缩型超级电容器的研究进展[J]. 中国科学:材料科学, 2016, 59 (6):475-494. ZHANG Xiyue, ZHANG Haozhe, LIN Ziqi, et al. Recent advances and challenges of stretchable supercapacitors based on carbon materials[J]. Science China Materials, 2016, 59 (6):475-494.
[4] YU J, WANG M, XU P, et al. Ultrahigh-rate wire-shaped supercapacitor based on graphene fiber[J]. Carbon, 2017, 119:332-338.
[5] WANG G, ZHANG L, ZHANG J. A review of electrode materials for electrochemical supercapacitors[J]. Cheminform, 2012, 41 (2):797-828.
[6] 叶星柯, 周乾隆, 万中全, 等. 柔性超级电容器电极材料与器件研究进展[J]. 化学通报, 2017, 80 (1):10-33. YE Xingke, ZHOU Qianlong, WAN Zhongquan, et al. Research progress in electrode materials and devices of flexible supercapacitors[J]. Chemistry Bulletin, 2017, 80 (1):10-33.
[7] JOST K, DION G, GOGOTSI Y. Textile energy storage in perspective[J]. Journal of Materials Chemistry A, 2014, 2 (28):10776-10787.
[8] SUN J, HUANG Y, SEA Y N S, et al. Recent progress of fiber-shaped asymmetric supercapacitors[J]. Materials Today Energy, 2017, 5:1-14.
[9] LU W, ZU M, BYUN J H, et al. State of the art of carbon nanotube fibers:Opportunities and challenges[J]. Advanced Materials, 2012, 24 (14):1805-1833.
[10] YU J, WANG L, LAI X, et al. A durability study of carbon nanotube fiber based stretchable electronic devices under cyclic deformation[J]. Carbon, 2015, 94:352-361.
[11] SNOOK G A, KAO P, BEST A S. Conducting-polymer-based supercapacitor devices and electrodes[J]. Journal of Power Sources, 2011, 196 (1):1-12.
[12] WANG K, MENG Q, ZHANG Y, et al. High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays[J]. Advanced Materials, 2013, 25 (10):1494-1498.
[13] YOU B, WANG L, YAO L, et al. Three dimensional N-doped graphene-CNT networks for supercapacitor[J]. Chemical Communications, 2013, 49 (44):5016-5018.
[14] BING D, LU X, YUAN C, et al. One-step electrochemical composite polymerization of polypyrrole integrated with functionalized graphene/carbon nanotubes nanostructured composite film for electrochemical capacitors[J]. Electrochimica Acta, 2012, 62 (1):132-139.
[15] ZENG S, CHEN H, CAI F, et al. Electrochemical fabrication of carbon nanotube/polyaniline hydrogel film for all-solid-state flexible supercapacitor with high areal capacitance[J]. Journal of Materials Chemistry A, 2015, 3 (47):23864-23870.
[16] SU F, MIAO M, NIU H, et al. Gamma-irradiated carbon nanotube yarn as substrate for high-performance fiber supercapacitors[J]. ACS Applied Materials & Interfaces, 2014, 6 (4):2553-2560.
[17] CAI Z, LI L, REN J, et al. Flexible, weavable and efficient microsupercapacitor wires based on polyaniline composite fibers incorporated with aligned carbon nanotubes[J]. Journal of Materials Chemistry A, 2012, 1 (2):258-261.
[18] ZHANG L, HUANG D, HU N, et al. Three-dimensional structures of graphene/polyaniline hybrid films constructed by steamed water for high-performance supercapacitors[J]. Journal of Power Sources, 2017, 342:1-8.
[19] FU Y, CAI X, WU H, et al. Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage[J]. Advanced Materials, 2012, 24 (42):5713-5718.
[20] ZHOU Z, WU X F, HOU H. Electrospun carbon nanofibers surface-grown with carbon nanotubes and polyaniline for use as high-performance electrode materials of supercapacitors[J]. RSC Advances, 2014, 4 (45):23622-23629.
[21] XIAO X, DING T, YUAN L, et al. WO3-x/MoO3-x core/shell nanowires on carbon fabric as an anode for all-solid-state asymmetric supercapacitors[J]. Advanced Energy Materials, 2012, 2 (11):1328-1332. |