[1] 侯朝勇, 数见昌弘, 许守平, 等. 基于微分曲线的LiFePO4电池SOC估计算法研究[J]. 储能科学与技术, 2017, 6(6):1321-1327. HOU Chaoyong, MASAHIRO Kazumi, XU Shouping, et al. Research of SOC estimation algorithm for LiFePO4 battery based on differential curves[J]. Energy Storage Science and Technology, 2017, 6(6):1321-1327.
[2] 林俊豪, 古雄文, 马丽. 基于优化调度的用户侧电池储能配置及控制方法[J]. 储能科学与技术, 2018, 7(1):90-99. LIN Junhao, GU Xiongwen, MA Li. Optimal sizing and control of demand-side battery energy storage system[J]. Energy Storage Science and Technology, 2018, 7(1):90-99.
[3] 刘伟龙, 王丽芳, 王立业. 基于电动汽车工况识别预测的锂离子电池SOE估计[J]. 电工技术学报, 2018, 33(1):17-25. LIU Weilong, WANG Lifang, WANG Liye. Estimation of state-of-energy for electric vehicles based on the identification and prediction of driving condition[J]. Transactions of China Electrotechnical Society, 2018, 33(1):17-25.
[4] 胡飞, 林明翔, 刘曙光, 等. 锂离子储能电池Li4Ti5O12的失效分析[J]. 储能科学与技术, 2016, 5(4):454-461. HU Fei, LIN Mingxiang, LIU Shuguang, et al. The degradation analysis of lithium-ion storage battery with Li4Ti5O12 anode[J]. Energy Storage Science and Technology, 2016, 5(4):454-461.
[5] CHRISTOPHE F, DINH V D, GUY F, et al. Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery[J]. Journal of Power Sources, 2010, 195(9):2961-2968.
[6] KONG S N, CHIN-SIEN M, CHEN Y, et al. Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries[J]. Applied Energy, 2009, 86(9):1506-1511.
[7] ZOU C, CHRIS M, DRAGAN N, et al. Multi-time-scale observer design for state-of-charge and state-ofhealth of a lithium-ion battery[J]. Journal of Power Sources, 2016, 335:121-130.
[8] TORSTEN W, BJÖRN F, HANNES K. Implementation and robustness of an analytically based battery state of power[J]. Journal of Power Sources, 2015, 287:448-457.
[9] DONG G, ZHANG X, ZHANG C, et al. A method for state of energy estimation of lithium-ion batteries based on neural network model[J]. Energy, 2015, 90:879-888.
[10] WIDANAGE W D, BARAI A, CHOUCHELAMANE G H, et al. Design and use of multisine signals for Li-ion battery equivalent circuit modelling. Part 1:Signal design[J]. Journal of Power Sources, 2016, 324:70-78.
[11] WIDANAGE W D, BARAI A, CHOUCHELAMANE G H, et al. Design and use of multisine signals for Li-ion battery equivalent circuit modelling. Part 2:Model estimation[J]. Journal of Power Sources, 2016, 324:61-69.
[12] NANDHINI G, SUMAN B, KRISHNAN S H, et al. Physics based modeling of a series parallel battery pack for asymmetry analysis, predictive control and life extension[J]. Journal of Power Sources, 2016, 322:57-67.
[13] RAJABLOO B, DÉSILETS M, CHOQUETTE Y. Parameter estimation of single particle model using COMSOL Multiphysics® and MATLAB® optimization toolbox[C]//The 2015 COMSOL Conference, 2015.
[14] RAJABLOO B, JOKAR A, WAKEM W, et al. Lithium iron phosphate electrode semi-empirical performance model[J]. Journal of Applied Electrochemistry, 2018, 48(6):663-674.
[15] GREGORY L P. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 1. Background[J]. Journal of Power Sources, 2004, 134(2):252-261.
[16] GREGORY L P. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 2. Modeling and identification[J]. Journal of Power Sources, 2004, 134(2):262-276.
[17] GREGORY L P. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 3. State and parameter estimation[J]. Journal of Power Sources, 2004, 134(2):277-292.
[18] SUNGWOO C, HYEONSEOK J, CHONGHUN H, et al. State-of-charge estimation for lithium-ion batteries under various operating conditions using an equivalent circuit model[J]. Computers and Chemical Engineering, 2012, 41:1-9.
[19] WENHUA H. Z, YING Z, BRUCE J T. A simplified equivalent circuit model for simulation of Pb-acid batteries at load for energy storage application[J]. Energy Conversion and Management, 2011, 52(89):2794-2799.
[20] HE H, XIONG R, FAN J. Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach[J]. Energies, 2011, 4(4):582-598.
[21] JOHNSON V H. Battery performance models in ADVISOR[J]. Journal of Power Sources, 2002, 110(2):321-329.
[22] LIA J, ADEWUYIA K, LOTFIB N, et al. A single particle model with chemical/mechanical degradation physics for lithium ion battery state of health (SOH) estimation[J]. Applied Energy, 2018, 212:1178-1190.
[23] GOPALUNI R B, BRAATZ R D. State of charge estimation in Li-ion batteries using an isothermal pseudo two-dimensional model[J]. Ifac Proceedings Volumes, 2013, 46(32):135-140.
[24] ALI J, BARZIN R, MARTIN D, et al. Review of simplified Pseudo-two-Dimensional models of lithium-ion batteries[J]. Journal of Power Sources, 2016, 327:44-55.
[25] DAO T, VYASARAYANI C P, MCPHEE J. Simplification and order reduction of lithium-ion battery model based on porous-electrode theory[J]. Journal of Power Sources, 2012, 198:329-337.
[26] ALDO R, LUIS A. Comparison of discretization methods applied to the single-particle model of lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(23):10267-10279.
[27] LUO W, LYU C, WANG L, et al. A new extension of physics-based single particle model for higher chargeedischarge rates[J]. Journal of Power Sources, 2013, 241:295-310.
[28] RAMADESIGAN V, BOOVARAGAVAN V, PIRKLE J C, et al. Efficient reformulation of solid-phase diffusion in physics-based lithium-ion battery models[J]. Journal of the Electrochemical Society, 2010, 157(7):A854-A860.
[29] ZHANG Q, WHITE R E. Comparison of approximate solution methods for the solid phase diffusion equation in a porous electrode model[J]. Journal of Power Sources, 2007, 165(2):880-886. |