Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (1): 128-136.doi: 10.19799/j.cnki.2095-4239.2020.0334
• Energy Storage Materials and Devices • Previous Articles Next Articles
Chenlu YU(), Xiaohua TIAN, han ZHENG, Zhejuan ZHANG(), Zhuo SUN, Xianqing PIAO
Received:
2020-10-04
Revised:
2020-10-14
Online:
2021-01-05
Published:
2021-01-08
Contact:
Zhejuan ZHANG
E-mail:614724850@qq.com;zjzhang@phy.ecnu.edu.cn
CLC Number:
Chenlu YU, Xiaohua TIAN, han ZHENG, Zhejuan ZHANG, Zhuo SUN, Xianqing PIAO. Research progress in high stability of silicon/hard carbon anodes for LIBs[J]. Energy Storage Science and Technology, 2021, 10(1): 128-136.
1 | 余晨露, 田晓华, 张哲娟, 等. 锂离子电池硅基负极比容量提升的研究进展[J]. 储能科学与技术, 2020, 9(6): 1614-1628. |
YU Chenlu, TIAN Xiaohua, ZHANG Zhejuan, et al. Research progress in specific capacity improvements of silicon-based anodes on lithium-ion batteries[J]. Energy Storage Science and Technology, 2020,9(6):1614-1628 | |
2 | 潘福森, 沈龙, 童磊, 等. 喷雾造粒制备纳米硅-硬碳复合材料及其性能[J]. 材料导报, 2020, 34(S1): 132-136. |
PAN Fusen, SHEN Long, TONG Lei, et al. Preparation and properties of nano silicon-hard carbon composites by spray drying[J]. Materials Reports, 2020, 34(S1): 132-136. | |
3 | LIU Xiaohua, ZHONG Li, HUANG Shan, et al. Size-dependent fracture of silicon nanoparticles during lithiation[J]. ACS Nano, 2012, 6(2): 1522-1531. |
4 | ZHAO Xiuyun, LEHTO V P. Challenges and prospects of nanosized silicon anodes in lithium-ion batteries[J]. Nanotechnology, 2020, 32(4): doi: 10.1088/1361-6528/abb850. |
5 | TIAN Huajun, TAN Xiaojian, XIN Fengxia, et al. Micro-sized nano-porous Si/C anodes for lithium ion batteries[J]. Nano Energy, 2015, 11: 490-499. |
6 | JIA Haiping, ZHENG Jianming, SONG Junhua, et al. A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries[J]. Nano Energy, 2018, 50: 589-597. |
7 | HU Xiaozhen, JIN Yan, ZHU Bin, et al. Tuning density of Si nanoparticles on graphene sheets in graphene-Si aerogels for stable lithium ion batteries[J]. Journal of Colloid and Interface Science, 2018, 532: 738-745. |
8 | YU Jing, ZHAN Hanhui, WANG Yanhong, et al. Graphite microspheres decorated with Si particles derived from waste solid of organosilane industry as high capacity anodes for Li-ion batteries[J]. Journal of Power Sources, 2013, 228: 112-119. |
9 | 刘文政. 锂离子电池多孔Si@C复合负极材料的制备与性能研究[D]. 南昌: 南昌大学, 2019. |
LIU Wenzheng. Study on fabrication and properties of porous Si@C composite in lithium ion anode materials[D]. Nanchang: Nanchang University, 2019. | |
10 | ZHANG Shilin, YAO Feng, YANG Lan, et al. Sulfur-doped mesoporous carbon from surfactant-intercalated layered double hydroxide precursor as high-performance anode nanomaterials for both Li-ion and Na-ion batteries[J]. Carbon, 2015, 93: 143-150. |
11 | QIE Long, CHEN Weimin, WANG Zhaohui, et al. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability[J]. Advanced Materials, 2012, 24(15): 2047-2050. |
12 | MAO Ya, DUAN Hui, XU Bin, et al. Lithium storage in nitrogen-rich mesoporous carbon materials[J]. Energy & Environmental Science, 2012, 5(7): 7950-7955. |
13 | QUAN Bo, YU Seungho, CHUNG Dongyoung, et al. Single source precursor-based solvothermal synthesis of heteroatom-doped graphene and its energy storage and conversion applications[J]. Scientific Reports, 2014, 4(1): doi:10.1038/srep05639. |
14 | CHANG W S, PARK C M, KIM J H, et al. Quartz (SiO2): A new energy storage anode material for Li-ion batteries[J]. Energy & Environmental Science, 2012, 5(5): 6895-6899. |
15 | JIANG Yong, LIU Shuai, DING Yanwei, et al. Modification based on primary particle level to improve the electrochemical performance of SiOx-based anode materials[J]. Journal of Power Sources, 2020, 467: doi: 10.1016/j.jpowsour.2020.228301. |
16 | 何旻雁, 杨志伟, 王振宇, 等. 聚酰亚胺粘结剂对锂离子电池用硅碳复合材料循环性能的影响[J]. 绝缘材料, 2019, 52(5): 21-24+28. |
HE Minyan, YANG Zhiwei, WANG Zhenyu, et al. Effect of polyimide binder on cycling performance of Si/C composite for Li-ion battery[J]. Insulating Materials, 2019, 52: 21-24+28. | |
17 | CHEN Chihyu, LIANG Aihua, HUANG Chengliang, et al. The pitch-based silicon-carbon composites fabricated by electrospraying technique as the anode material of lithium ion battery[J]. Journal of Alloys and Compounds, 2020, 844: doi: 10.1016/j.jallcom.2020.156025. |
18 | WU Rui, LIU Xianqiang, ZHENG Yijing, et al. Unveiling the intrinsic reaction between silicon-graphite composite anode and ionic liquid electrolyte in lithium-ion battery[J]. Journal of Power Sources, 2020, 473: doi: 10.1016/j.jpowsour.2020.228481. |
19 | PENG Bo, XU Yaolin, WANG Xiaoqun, et al. The electrochemical performance of super P carbon black in reversible Li/Na ion uptake[J]. Science China (Physics, Mechanics & Astronomy), 2017, 60(6): 58-65. |
20 | 孟奇, 张英杰, 董鹏, 等. 硅/碳纳米管/碳复合材料的制备及其电化学性能研究[J]. 化工新型材料, 2020, 48(10): 101-105+114. |
MENG Qi, ZHANG Yingjie, DONG Peng, et al. Electrochemical properties and preparation of silicon/carbon nanotubes/carbon composites[J]. New Chemical Materials, 2020, 48(10): 101-105+114. |
[1] | Xianxi LIU, Anliang SUN, Chuan TIAN. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate [J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273. |
[2] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[3] | Jianxiang DENG, Jinliang ZHAO, Chengde HUANG. High energy density lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2092-2102. |
[4] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[5] | SHI Peng, ZHAI Ximin, YANG Hejie, ZHAO Chenzi, YAN Chong, BIE Xiaofei, JIANG Tao, ZHANG Qiang. Recent advances in composite lithium anode under practical conditions [J]. Energy Storage Science and Technology, 2022, 11(6): 1725-1738. |
[6] | YU Chunhui, HE Ziying, ZHANG Chenxi, LIN Xianqing, XIAO Zhexi, WEI Fei. The analyses and suppressing strategies of silicon anode with the electrolyte [J]. Energy Storage Science and Technology, 2022, 11(6): 1749-1759. |
[7] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[8] | XIAO Zhexi, LU Feng, LIN Xianqing, ZHANG Chenxi, BAI Haolong, YU Chunhui, HE Ziying, JIANG Hairong, WEI Fei. Mass production of SiO x @C anode material in gas-solid fluidized bed [J]. Energy Storage Science and Technology, 2022, 11(6): 1739-1748. |
[9] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[10] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[11] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
[12] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[13] | Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes [J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. |
[14] | Lei LI, Zhao LI, Dan JI, Huichang NIU. Overcharge induced thermal runaway behaviors of pouch-type lithium-ion batteries with LFP and NCM cathodes: the differences and reasons [J]. Energy Storage Science and Technology, 2022, 11(5): 1419-1427. |
[15] | Hui TIAN, Dong HUA, Maoli MAN, Chunzhe LIU, Guojun LI, Xiongwen ZHANG. Experimental study on carbon deposition characteristics of planar solid oxide fuel cell [J]. Energy Storage Science and Technology, 2022, 11(5): 1314-1321. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||