1 |
张春伟, 陈静, 王成刚, 等. 相变储能技术的传热强化方法综述[J]. 制冷学报, 2023, 44(1): 1-13.
|
|
ZHANG C W, CHEN J, WANG C G, et al. Summary of heat transfer enhancement methods of phase change energy storage technology[J]. Journal of Refrigeration, 2023, 44(1): 1-13.
|
2 |
LI M J, JIN B, MA Z, et al. Experimental and numerical study on the performance of a new high-temperature packed-bed thermal energy storage system with macroencapsulation of molten salt phase change material[J]. Applied Energy, 2018, 221: 1-15.
|
3 |
孙世平, 李翔, 申月, 等.无机水合盐相变储能材料研究进展[J/OL].化工新型材料:1-9[2023-03-08].http://kns.cnki.net/kcms/detail/11.2357.TQ.20221219.1737.017.html.
|
|
Sun S P, Li X, Shen Y, et al. Research progress of inorganic hydrated salt phase change energy storage materials[J/OL]. New Chemical Materials:1-9 [2023-03-08].http://kns.cnki.net/kcms/detail/11.2357.TQ.20221219.1737.017.html.
|
4 |
张琦, 刘重阳, 宋俊, 等. 微胶囊相变储能材料的合成及其应用研究进展[J]. 储能科学与技术, 2023, 12(4): 1110-1130.
|
|
ZHANG Q, LIU (C /Z)Y, SONG J, et al. Progress in synthesis and application of microencapsulated phase change energy storage materials[J]. Energy Storage Science and Technology, 2023, 12(4): 1110-1130.
|
5 |
王文楷, 董震, 赖艳华, 等. 相变储能材料的研究与应用进展[J]. 制冷与空调(四川), 2020, 34(1): 91-103.
|
|
WANG W K, DONG Z, LAI Y H, et al. The research and application progress of phase change energy storage materials[J]. Refrigeration & Air Conditioning, 2020, 34(1): 91-103.
|
6 |
HE X B, QIU J, WANG W, et al. A review on numerical simulation, optimization design and applications of packed-bed latent thermal energy storage system with spherical capsules[J]. Journal of Energy Storage, 2022, 51: 104555.
|
7 |
SHAMSHIRI M, JAFARI R, MOMEN G. An intelligent icephobic coating based on encapsulated phase change materials (PCM)[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 655: 130157.
|
8 |
YUAN F, LI M J, MA Z, et al. Experimental study on thermal performance of high-temperature molten salt cascaded latent heat thermal energy storage system[J]. International Journal of Heat and Mass Transfer, 2018, 118: 997-1011.
|
9 |
PEIRÓ G, GASIA J, MIRÓ L, et al. Experimental evaluation at pilot plant scale of multiple PCMs (cascaded) vs. single PCM configuration for thermal energy storage[J]. Renewable Energy, 2015, 83: 729-736.
|
10 |
马朝, 何雅玲, 袁帆, 等. 高温套管式熔融盐相变蓄热器蓄热性能实验研究[J]. 西安交通大学学报, 2017, 51(5): 1-8.
|
|
MA Z, HE Y L, YUAN F, et al. Experimental study on the thermal performance of high-temperature shell-and-tube molten salt phase-change thermal energy storage[J]. Journal of Xi'an Jiaotong University, 2017, 51(5): 1-8.
|
11 |
MAHDI J M, LOHRASBI S, GANJI D D, et al. Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex-tube heat exchanger[J]. International Journal of Heat and Mass Transfer, 2018, 124: 663-676.
|
12 |
LIN J Q, ZHAO Q, HUANG H T, et al. Applications of low-temperature thermochemical energy storage systems for salt hydrates based on material classification: A review[J]. Solar Energy, 2021, 214: 149-178.
|
13 |
NAZIR H, BATOOL M, BOLIVAR OSORIO F J, et al. Recent developments in phase change materials for energy storage applications: A review[J]. International Journal of Heat and Mass Transfer, 2019, 129: 491-523.
|
14 |
XIAO X, ZHANG P. Numerical and experimental study of heat transfer characteristics of a shell-tube latent heat storage system: Part I-Charging process[J]. Energy, 2015, 79: 337-350.
|