Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (8): 2536-2546.doi: 10.19799/j.cnki.2095-4239.2023.0186
• Energy Storage System and Engineering • Previous Articles Next Articles
Yu GUO1,2,3,4(), Yiwei WANG2,3,4, Juan ZHONG5, Jinqiao DU5, Jie TIAN5, Yan LI5, Fangming JIANG1,2,3,4()
Received:
2023-03-28
Revised:
2023-04-16
Online:
2023-08-05
Published:
2023-08-23
Contact:
Fangming JIANG
E-mail:guoyu@ms.giec.ac.cn;jiangfm@ms.giec.ac.cn
CLC Number:
Yu GUO, Yiwei WANG, Juan ZHONG, Jinqiao DU, Jie TIAN, Yan LI, Fangming JIANG. Fault diagnosis method for microinternal short circuits in lithium-ion batteries based on incremental capacity curve[J]. Energy Storage Science and Technology, 2023, 12(8): 2536-2546.
1 | ZHAO G L, BAKER J. Effects on environmental impacts of introducing electric vehicle batteries as storage-A case study of the United Kingdom[J]. Energy Strategy Reviews, 2022, 40: doi: 10.1016/j.esr.2022.100819. |
2 | 曹文炅, 雷博, 史尤杰, 等. 韩国锂离子电池储能电站安全事故的分析及思考[J]. 储能科学与技术, 2020, 9(5): 1539-1547. |
CAO W J, LEI B, SHI Y J, et al. Ponderation over the recent safety accidents of lithium-ion battery energy storage stations in South Korea[J]. Energy Storage Science and Technology, 2020, 9(5): 1539-1547. | |
3 | 周洋捷, 王震坡, 洪吉超, 等. 新能源汽车动力电池"过充电-热失控"安全防控技术研究综述[J]. 机械工程学报, 2022, 58(10): 112-135. |
ZHOU Y J, WANG Z P, HONG J C, et al. Review of overcharge-to-thermal runaway and the control strategy for lithium-ion traction batteries in electric vehicles[J]. Journal of Mechanical Engineering, 2022, 58(10): 112-135. | |
4 | 刘力硕, 张明轩, 卢兰光, 等. 锂离子电池内短路机理与检测研究进展[J]. 储能科学与技术, 2018, 7(6): 1003-1015. |
LIU L S, ZHANG M X, LU L G, et al. Recent progress on mechanism and detection of internal short circuit in lithium-ion batteries[J]. Energy Storage Science and Technology, 2018, 7(6): 1003-1015. | |
5 | FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. |
6 | OUYANG M G, ZHANG M X, FENG X N, et al. Internal short circuit detection for battery pack using equivalent parameter and consistency method[J]. Journal of Power Sources, 2015, 294: 272-283. |
7 | MENG J W, BOUKHNIFER M, DELPHA C, et al. Incipient short-circuit fault diagnosis of lithium-ion batteries[J]. Journal of Energy Storage, 2020, 31: doi: 10.1016/j.est.2020.101658. |
8 | CHANG C, ZHOU X P, JIANG J C, et al. Electric vehicle battery pack micro-short circuit fault diagnosis based on charging voltage ranking evolution[J]. Journal of Power Sources, 2022, 542: doi: 10.1016/j.jpowsour.2022.231733. |
9 | KONG X D, ZHENG Y J, OUYANG M G, et al. Fault diagnosis and quantitative analysis of micro-short circuits for lithium-ion batteries in battery packs[J]. Journal of Power Sources, 2018, 395: 358-368. |
10 | QIU Y S, CAO W J, PENG P, et al. A novel entropy-based fault diagnosis and inconsistency evaluation approach for lithium-ion battery energy storage systems[J]. Journal of Energy Storage, 2021, 41: doi: 10.1016/j.est.2021.102852. |
11 | ZHANG Z D, KONG X D, ZHENG Y J, et al. Real-time diagnosis of micro-short circuit for Li-ion batteries utilizing low-pass filters[J]. Energy, 2019, 166: 1013-1024. |
12 | FENG X N, WENG C H, OUYANG M G, et al. Online internal short circuit detection for a large format lithium ion battery[J]. Applied Energy, 2016, 161: 168-180. |
13 | WANG G, SUN Y D, PANG K, et al. Quantitative diagnosis of the soft short circuit for LiFePO4 battery packs between voltage plateaus[J]. Journal of Energy Storage, 2023, 61: doi: 10.1016/j.est.2023.106683. |
14 | XIE J L, ZHANG L, YAO T Q, et al. Quantitative diagnosis of internal short circuit for cylindrical Li-ion batteries based on multiclass relevance vector machine[J]. Journal of Energy Storage, 2020, 32: doi: 10.1016/j.est.2020.101957. |
15 | CHEN Z Y, XIONG R, TIAN J P, et al. Model-based fault diagnosis approach on external short circuit of lithium-ion battery used in electric vehicles[J]. Applied Energy, 2016, 184: 365-374. |
16 | CHEN Y X, TORRES-CASTRO L, CHEN K H, et al. Operando detection of Li plating during fast charging of Li-ion batteries using incremental capacity analysis[J]. Journal of Power Sources, 2022, 539: doi: 10.1016/j.jpowsour.2022.231601. |
17 | OSPINA AGUDELO B, ZAMBONI W, MONMASSON E. Application domain extension of incremental capacity-based battery SoH indicators[J]. Energy, 2021, 234: doi: 10.1016/j.energy.2021.121224. |
18 | TANG X P, LIU K L, LU J Y, et al. Battery incremental capacity curve extraction by a two-dimensional Luenberger-Gaussian-moving-average filter[J]. Applied Energy, 2020, 280: doi: 10.1016/j.apenergy.2020.115895. |
19 | NOELLE D J, WANG M, LE A V, et al. Internal resistance and polarization dynamics of lithium-ion batteries upon internal shorting[J]. Applied Energy, 2018, 212: 796-808. |
20 | QIAO D D, WANG X Y, LAI X, et al. Online quantitative diagnosis of internal short circuit for lithium-ion batteries using incremental capacity method[J]. Energy, 2022, 243: doi: 10.1016/j.energy. 2021.123082. |
21 | BHAT A, RICHARDSON I, KANNANGARA S. A new perceptual quality metric for compressed video based on mean squared error[J]. Signal Processing: Image Communication, 2010, 25(8): 588-596. |
22 | JIANG B, DAI H F, WEI X Z. Incremental capacity analysis based adaptive capacity estimation for lithium-ion battery considering charging condition[J]. Applied Energy, 2020, 269: doi: 10.1016/j.apenergy.2020.115074. |
23 | PAN W J, LUO X S, ZHU M T, et al. A health indicator extraction and optimization for capacity estimation of Li-ion battery using incremental capacity curves[J]. Journal of Energy Storage, 2021, 42: doi: 10.1016/j.est.2021.103072. |
24 | CHEN Z H, DENG Y L, LI H L, et al. An efficient regrouping method of retired lithium-ion iron phosphate batteries based on incremental capacity curve feature extraction for echelon utilization[J]. Journal of Energy Storage, 2022, 56: doi: 10.1016/j.est.2022. 105917. |
25 | LI Y, ABDEL-MONEM M, GOPALAKRISHNAN R, et al. A quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter[J]. Journal of Power Sources, 2018, 373: 40-53. |
26 | MA M N, WANG Y, DUAN Q L, et al. Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis[J]. Energy, 2018, 164: 745-756. |
27 | WU M Y, QIN L L, WU G. State of power estimation of power lithium-ion battery based on an equivalent circuit model[J]. Journal of Energy Storage, 2022, 51: doi: 10.1016/j.est.2022.104538. |
28 | FENG X N, PAN Y, HE X M, et al. Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm[J]. Journal of Energy Storage, 2018, 18: 26-39. |
29 | SINGH A, IZADIAN A, ANWAR S. Model based condition monitoring in lithium-ion batteries[J]. Journal of Power Sources, 2014, 268: 459-468. |
30 | HU X S, LI S B, PENG H E. A comparative study of equivalent circuit models for Li-ion batteries[J]. Journal of Power Sources, 2012, 198: 359-367. |
31 | 何晋, 马睿飞, 蔡琦琳, 等. 基于递推最小二乘法的锂电池内短路全寿命周期辨识[J]. 机械工程学报, 2022, 58(17): 96-104. |
HE J, MA R F, CAI Q L, et al. Life cycle identification of internal short circuit in lithium battery based on recursive least square method[J]. Journal of Mechanical Engineering, 2022, 58(17): 96-104. | |
32 | JIAQIANG E, ZHANG B, ZENG Y, et al. Effects analysis on active equalization control of lithium-ion batteries based on intelligent estimation of the state-of-charge[J]. Energy, 2022, 238: doi: 10.1016/j.energy.2021.121822. |
33 | RAMADASS P, FANG W F, ZHANG Z M. Study of internal short in a Li-ion cell I. Test method development using infra-red imaging technique[J]. Journal of Power Sources, 2014, 248: 769-776. |
34 | LAMB J, ORENDORFF C J. Evaluation of mechanical abuse techniques in lithium ion batteries[J]. Journal of Power Sources, 2014, 247: 189-196. |
35 | ORENDORFF C J, ROTH E P, NAGASUBRAMANIAN G. Experimental triggers for internal short circuits in lithium-ion cells[J]. Journal of Power Sources, 2011, 196(15): 6554-6558. |
36 | ZHANG M X, DU J Y, LIU L S, et al. Internal short circuit trigger method for lithium-ion battery based on shape memory alloy[J]. Journal of the Electrochemical Society, 2017, 164(13): doi: 10.1149/2.0731713jes. |
37 | GUO R, LU L G, OUYANG M G, et al. Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries[J]. Scientific Reports, 2016, 6: doi: 10.1038/srep30248. |
[1] | Jiaxing YANG, Hengyun ZHANG, Yidong XU. Heat generation analysis for lithium-ion battery components using electrochemical and thermal coupled model [J]. Energy Storage Science and Technology, 2023, 12(8): 2615-2625. |
[2] | Jilu ZHANG, Yuchen DONG, Qiang SONG, Siming YUAN, Xiaodong GUO. Controllable synthesis and electrochemical mechanism related to polycrystalline and single-crystalline Ni-rich layered LiNi0.9Co0.05Mn0.05O2 cathode materials [J]. Energy Storage Science and Technology, 2023, 12(8): 2382-2389. |
[3] | Anhao ZUO, Ruqing FANG, Zhe LI. Kinetic characterization of electrode materials for lithium-ion batteries via single-particle microelectrodes [J]. Energy Storage Science and Technology, 2023, 12(8): 2457-2481. |
[4] | Yun DI, Zhengzhu ZHOU, Huihong DANG, Zhihao GE. Modeling and verification of electric-thermal coupling in batteries based on ECM [J]. Energy Storage Science and Technology, 2023, 12(8): 2638-2648. |
[5] | Shuqin LIU, Xiaoyan WANG, Zhendong ZHANG, Zhenxia DUAN. Experimental and simulation research on liquid-cooling system of lithium-ion battery packs [J]. Energy Storage Science and Technology, 2023, 12(7): 2155-2165. |
[6] | Maosong FAN, Mengmeng GENG, Guangjin ZHAO, Kai YANG, Fangfang WANG, Hao LIU. Research on battery sorting technology for echelon utilization based on multifrequency impedance [J]. Energy Storage Science and Technology, 2023, 12(7): 2202-2210. |
[7] | Yi WANG, Xuebing CHEN, Yuanxi WANG, Jieyun ZHENG, Xiaosong LIU, Hong LI. Overview of multilevel failure mechanism and analysis technology of energy storage lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2079-2094. |
[8] | Zhiwei CHEN, Weige ZHANG, Junwei ZHANG, Yanru ZHANG. Comprehensive health assessment and screening method of power battery pack based on visual characteristics of charge curves [J]. Energy Storage Science and Technology, 2023, 12(7): 2211-2219. |
[9] | Yubo ZHANG, Youyuan WANG, Dongning HUANG, Ziyi WANG, Weigen CHEN. Prognostic method of lithium-ion battery lifetime degradation under various working conditions [J]. Energy Storage Science and Technology, 2023, 12(7): 2238-2245. |
[10] | Qinpei CHEN, Xuehui WANG, Wenzhong MI. Experiential study on the toxic and explosive characteristics of thermal runaway gas generated in electric-vehicle lithium-ion battery systems [J]. Energy Storage Science and Technology, 2023, 12(7): 2256-2262. |
[11] | Wenda ZAN, Rui ZHANG, Fei DING. Development and application of electrochemical models for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2302-2318. |
[12] | Hongsheng GUAN, Cheng QIAN, Binghui XU, Bo SUN, Yi REN. SAM-GRU-based fusion neural network for SOC estimation in lithium-ion batteries under a wide range of operating conditions [J]. Energy Storage Science and Technology, 2023, 12(7): 2229-2237. |
[13] | Qingsong ZHANG, Fangwei BAO, Jiangjao NIU. Risk analysis method of thermal runaway gas explosion in lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2263-2270. |
[14] | Birong TAN, Jianhua DU, Xianghu YE, Xin CAO, Chang QU. Overview of SOC estimation methods for lithium-ion batteries based on model [J]. Energy Storage Science and Technology, 2023, 12(6): 1995-2010. |
[15] | Fang LI, Yongjun MIN, Yong ZHANG. Review of key technology research on the reliability of power lithium batteries based on big data [J]. Energy Storage Science and Technology, 2023, 12(6): 1981-1994. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||