Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (8): 2547-2555.doi: 10.19799/j.cnki.2095-4239.2023.0141
• Energy Storage System and Engineering • Previous Articles Next Articles
Chengbo TANG(), Yaohong SUO(), Zhaokun HE
Received:
2023-03-13
Revised:
2023-04-18
Online:
2023-08-05
Published:
2023-08-23
Contact:
Yaohong SUO
E-mail:boctang@163.com;yaohongsuo@126.com
CLC Number:
Chengbo TANG, Yaohong SUO, Zhaokun HE. Effect of fluid-flow direction on heat dissipation from lithium-ion batteries based on sine-function cooling plate[J]. Energy Storage Science and Technology, 2023, 12(8): 2547-2555.
Table 2
Polynomial coefficients for 1 C, 2 C and 3 C in equation (6)[24]"
放电倍率 | A1 | A2 | A3 | A4 | A5 | A6 | A7 |
---|---|---|---|---|---|---|---|
1 C | 4.9132×10-16 | -3.7742×10-12 | 1.0679×10-8 | -1.3417×10-5 | 7.6000×10-3 | -2.2208 | 1.7152×104 |
2 C | 1.2578×10-13 | -4.8310×10-10 | 6.8347×10-7 | -4.2934×10-4 | 1.2160×10-1 | -17.763 | 6.6623×10 4 |
3 C | 3.2235×10-12 | -8.2542×10-9 | 7.7851×10-6 | -3.2303×10-3 | 6.1570×10-3 | -59.961 | 1.4841×105 |
1 | 常修亮, 郑莉莉, 韦守李, 等. 锂离子电池热失控仿真研究进展[J]. 储能科学与技术, 2021, 10(6): 2191-2199. |
CHANG X L, ZHENG L L, WEI S L, et al. Progress in thermal runaway simulation of lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(6): 2191-2199. | |
2 | 李潇, 陈江英, 李翔晟. 基于新型流道液冷板的动力电池热管理性能[J]. 电源技术, 2020, 44(10): 1438-1442. |
LI X, CHEN J Y, LI X S. Study on thermal management performance of power batteries based on new flow passage liquid cooling plate[J]. Chinese Journal of Power Sources, 2020, 44(10): 1438-1442. | |
3 | 孔为, 金劲涛, 陆西坡, 等. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
KONG W, JIN J T, LU X P, et al. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel[J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. | |
4 | 沈华平, 竺玉强, 杨梓堙, 等. 锂离子电池模组液冷散热设计[J]. 电源技术, 2022, 46(3): 271-275. |
SHEN H P, ZHU Y Q, YANG Z Y, et al. Lithium-ion battery module liquid cooling heat dissipation design[J]. Chinese Journal of Power Sources, 2022, 46(3): 271-275. | |
5 | 胡兴军, 惠政, 郭鹏, 等. 锂离子电池组间接接触液冷散热结构研究[J]. 湖南大学学报(自然科学版), 2019, 46(2): 44-50. |
HU X J, HUI Z, GUO P, et al. Research on the indirect contact liquid cooling heat dissipation structure of lithium-ion battery pack[J]. Journal of Hunan University (Natural Sciences), 2019, 46(2): 44-50. | |
6 | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
LIU X X, SUN A L, TIAN C. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate[J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273. | |
7 | 王学章, 李科群. 锂电池叉流流道液冷结构设计及散热特性分析[J]. 物理学报, 2022, 71(18): 266-275. |
WANG X Z, LI K Q. Liquid-cooled structure design and heat dissipation characteristics analysis of cross-flow channels for lithium batteries[J]. Acta Physica Sinica, 2022, 71(18): 266-275. | |
8 | XU X M, TONG G Y, LI R Z. Numerical study and optimizing on cold plate splitter for lithium battery thermal management system[J]. Applied Thermal Engineering, 2020, 167: doi: 10.1016/j.applthermaleng.2019.114787. |
9 | XIA G D, CAO L, BI G L. A review on battery thermal management in electric vehicle application[J]. Journal of Power Sources, 2017, 367: 90-105. |
10 | WU C H, WANG Z P, BAO Y B, et al. Investigation on the performance enhancement of baffled cold plate based battery thermal management system[J]. Journal of Energy Storage, 2021, 41: doi: 10.1016/j.est.2021.102882. |
11 | 陈诚. 新能源汽车方形动力锂电池散热及优化设计研究[D]. 上海: 上海应用技术大学, 2020. |
CHEN C. Research on heat dissipation and optimization design of square power lithium battery for new energy vehicle[D].Shanghai: Shanghai Institute of Technology, 2020. | |
12 | DONG F, CHENG Z Y, SONG D C, et al. Investigation and optimization on cooling performance of serial-parallel mini-channel structure for liquid-cooled soft pack batteries[J]. Numerical Heat Transfer, Part A: Applications, 2021, 80(7): 368-387. |
13 | KONG W, ZHU K J, LU X P, et al. Enhancement of lithium-ion battery thermal management with the divergent-shaped channel cold plate[J]. Journal of Energy Storage, 2021, 42: doi: 10.1016/j.est.2021.103027. |
14 | LI Y B, ZHOU Z F, WU W T. Three-dimensional thermal modeling of internal shorting process in a 20 Ah lithium-ion polymer battery[J]. Energies, 2020, 13(4): doi: 10.3390/en13041013. |
15 | PATIL M S, SEO J H, PANCHAL S, et al. Numerical study on sensitivity analysis of factors influencing liquid cooling with double cold-plate for lithium-ion pouch cell[J]. International Journal of Energy Research, 2021, 45(2): 2533-2559. |
16 | WANG J F, LIU X D, LIU F, et al. Numerical optimization of the cooling effect of the bionic spider-web channel cold plate on a pouch lithium-ion battery[J]. Case Studies in Thermal Engineering, 2021, 26: doi: 10.1016/j.csite.2021.101124. |
17 | KARTHIK A, KALITA P, GARG A, et al. A Novel MOGA approach for power saving strategy and optimization of maximum temperature and maximum pressure for liquid cooling type battery thermal management system[J]. International Journal of Green Energy, 2021, 18(1): 80-89. |
18 | AMALESH T, NARASIMHAN N L. Introducing new designs of minichannel cold plates for the cooling of lithium-ion batteries[J]. Journal of Power Sources, 2020, 479: doi: 10.1016/j.jpowsour. 2020.228775. |
19 | MONIKA K, DATTA S P. Comparative assessment among several channel designs with constant volume for cooling of pouch-type battery module[J]. Energy Conversion and Management, 2022, 251: doi: 10.1016/j.enconman.2021.114936. |
20 | 张继龙, 陈江英, 李翔晟. 基于多蛇形变结构流道冷却板的散热性能研究[J]. 电源技术, 2021, 45(2): 190-194. |
ZHANG J L, CHEN J Y, LI X S. Research on heat dissipation performance of cooling plate based on multi-serpentine variable structure flow channel[J]. Chinese Journal of Power Sources, 2021, 45(2): 190-194. | |
21 | SHENG L, SU L, ZHANG H, et al. Numerical investigation on a lithium ion battery thermal management utilizing a serpentine-channel liquid cooling plate exchanger[J]. International Journal of Heat and Mass Transfer, 2019, 141: 658-668. |
22 | HUO Y T, RAO Z H, LIU X J, et al. Investigation of power battery thermal management by using mini-channel cold plate[J]. Energy Conversion and Management, 2015, 89: 387-395. |
23 | LIU H Q, CHIKA E Z, ZHAO J Y. Investigation into the effectiveness of nanofluids on the mini-channel thermal management for high power lithium ion battery[J]. Applied Thermal Engineering, 2018, 142: 511-523. |
24 | 李涛. 纯电动汽车锂离子电池热效应及电池组散热结构优化[D]. 重庆: 重庆大学, 2013. |
LI T. Thermal effect of lithium-ion battery in pure electric vehicle and optimization of heat dissipation structure of battery pack[D].Chongqing: Chongqing University, 2013. |
[1] | Yawen ZHAO, Yu HUANG, Yanru ZHANG. Analysis of safety test standard of rail transit power lithium-ion battery [J]. Energy Storage Science and Technology, 2022, 11(8): 2505-2518. |
[2] | Zhongmin REN, Bin WANG, Shuaishuai CHEN, Hua LI, Zhenlian CHEN, Deyu WANG. Mechanics-induced degradation on layer-structured cathodes and remedies to address it [J]. Energy Storage Science and Technology, 2022, 11(3): 948-956. |
[3] | Chengzhi KE, Bensheng XIAO, Miao LI, Jingyu LU, Yang HE, Li ZHANG, Qiaobao ZHANG. Research progress in understanding of lithium storage behavior and reaction mechanism of electrode materials through in situ transmission electron microscopy [J]. Energy Storage Science and Technology, 2021, 10(4): 1219-1236. |
[4] | Dechao GUO, Yimin GUO, Qiwen ZHANG, Xiangyun CI, Fengrong HE. Preparation and characterization of solvent-free dry electrodes for lithium ion batteries [J]. Energy Storage Science and Technology, 2021, 10(4): 1311-1316. |
[5] | Yilong LIN, Min XIAO, Dongmei HAN, Shuanjin WANG, Yuezhong MENG. Research progress in formation technique for LIBs [J]. Energy Storage Science and Technology, 2021, 10(1): 50-58. |
[6] | Taihua WANG, Shujie ZHANG, Jin'gan CHEN. Low temperature charging performance optimization of lithium battery based on BP-PSO Algorithm [J]. Energy Storage Science and Technology, 2020, 9(6): 1940-1947. |
[7] | Xintong LI, Linchen ZHANG, Huanrui ZHANG, Botao ZHANG, Guanglei CUI. Research progress of liquid-crystalline electrolytes in lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(6): 1595-1605. |
[8] | Xingang MA, Yuwei ZANG, Lianke XIE, Jianguang YIN, Guoying ZHANG, Rongchun MA, Xianzheng YUAN. Engineering pseudocapacitive lithium storage based on ultra-fine SnS2-carbon3D microstructure [J]. Energy Storage Science and Technology, 2020, 9(5): 1467-1471. |
[9] | Xuejiao NIE, Jinzhi GUO, Meiyi WANG, Zhenyi GU, Xinxin ZHAO, Xu YANG, Haojie LIANG, Xinglong WU. Using spent lithium manganate to prepare Li0.25Na0.6MnO2 as cathode material in sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1402-1409. |
[10] | MA Tengfei, MA Chao, SUN Rui, JI Hongmei, YANG Gang. Freeze-drying assisted synthesis of mno/reduced graphene composite and the improved rate cyclic performance for lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(4): 1044-1051. |
[11] | WANG Taihua, ZHANG Shujie, CHEN Jingan. Low temperature charging aging modeling and optimization of charging strategy for lithium batteries [J]. Energy Storage Science and Technology, 2020, 9(4): 1137-1146. |
[12] |
ZOU Jian, WANG Bojun, YANG Jiachao, NIU Xiaobin, WANG Liping.
Electrochemical performance of β-Li0.3V2O5 as a lithium-ion battery cathode material
[J]. Energy Storage Science and Technology, 2020, 9(2): 353-360.
|
[13] | ZHOU Xiaolong, OU Xuewu, LIU Qirong, TANG Yongbing. Research progress on dual-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 551-568. |
[14] | MAO Shulan, WU Qian, WANG Zhuoya, LU Yingying. Research progress on high-voltage electrolytes for ternary NCM lithium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 538-550. |
[15] | CHEN Xiaoxia, LIU Kai, WANG Baoguo. Research on high-safety electrolytes and their application in lithium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 583-592. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||