Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (2): 669-676.doi: 10.19799/j.cnki.2095-4239.2023.0698
• Energy Storage System and Engineering • Previous Articles Next Articles
Jinxiang YU1,2(), Yibo WANG2, Jianhong GUO2(), Xiaoyu ZHANG1
Received:
2023-10-10
Revised:
2023-10-23
Online:
2024-02-28
Published:
2024-03-01
Contact:
Jianhong GUO
E-mail:yujinxiang@mail.iee.ac.cn;guojh@mail.iee.ac.cn
CLC Number:
Jinxiang YU, Yibo WANG, Jianhong GUO, Xiaoyu ZHANG. Application of phase change heat storage in heat pump heating system based on time-of-use electricity pricing[J]. Energy Storage Science and Technology, 2024, 13(2): 669-676.
1 | Spencer Dale. Energy Outlook 2022 edition [R]. BP p.l.c., 2022.32-42.4-69. |
2 | 李政, 陈思源, 董文娟, 等. 碳约束条件下电力行业低碳转型路径研究[J]. 中国电机工程学报, 2021, 41(12): 3987-4001. |
LI Z, CHEN S Y, DONG W J, et al. Low carbon transition pathway of power sector under carbon emission constraints[J]. Proceedings of the CSEE, 2021, 41(12): 3987-4001. | |
3 | 辛保安, 单葆国, 李琼慧, 等. "双碳"目标下"能源三要素"再思考[J]. 中国电机工程学报, 2022, 42(9): 3117-3126. |
XIN B A, SHAN B G, LI Q H, et al. Rethinking of the "three elements of energy" toward carbon peak and carbon neutrality[J]. Proceedings of the CSEE, 2022, 42(9): 3117-3126. | |
4 | 舒印彪, 陈国平, 贺静波, 等. 构建以新能源为主体的新型电力系统框架研究[J]. 中国工程科学, 2021, 23(6): 61-69. |
SHU Y B, CHEN G P, HE J B, et al. Building a new electric power system based on new energy sources[J]. Strategic Study of CAE, 2021, 23(6): 61-69. | |
5 | 孔令国, 史立昊, 石振宇, 等. 基于交替方向乘子法的园区电-氢-热系统低碳优化调度[J]. 电工技术学报, 2023, 38(11): 2932-2944. |
KONG L G, SHI L H, SHI Z Y, et al. Low-carbon optimal dispatch of electric-hydrogen-heat system in park based on alternating direction method of multipliers[J]. Transactions of China Electrotechnical Society, 2023, 38(11): 2932-2944. | |
6 | 丁怡婷. 去年风电光伏发电量首次突破1万亿千瓦时——同比增长21%,占全社会用电量的13.8%[N]. 人民日报, 2023-02-14(10). |
7 | 姜云鹏, 任洲洋, 李秋燕, 等. 考虑多灵活性资源协调调度的配电网新能源消纳策略[J]. 电工技术学报, 2022, 37(7): 1820-1835. |
JIANG Y P, REN Z Y, LI Q Y, et al. An accommodation strategy for renewable energy in distribution network considering coordinated dispatching of multi-flexible resources[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1820-1835. | |
8 | 方乐, 刘成奎, 陈晓弢, 等. 含光热复合压缩空气储能的分布式综合能源系统容量规划方法[J]. 电工技术学报, 2022, 37(23): 5933-5943. |
FANG L, LIU C K, CHEN X T, et al. Capacity planning method of distributed integrated energy system with solar thermal composite compressed air energy storage[J]. Transactions of China Electrotechnical Society, 2022, 37(23): 5933-5943. | |
9 | 潘超, 范宫博, 王锦鹏, 等. 灵活性资源参与的电热综合能源系统低碳优化[J]. 电工技术学报, 2023, 38(6): 1633-1647. |
PAN C, FAN G B, WANG J P, et al. Low-carbon optimization of electric and heating integrated energy system with flexible resource participation[J]. Transactions of China Electrotechnical Society, 2023, 38(6): 1633-1647. | |
10 | 中华人民共和国住房和城乡建设部. 建筑节能与可再生能源利用通用规范: GB 55015—2021[S]. 北京: 中国建筑工业出版社, 2021. |
Ministry of Housing and Urban-Rural Development of the People's Republic of China. General code for energy efficiency and renewable energy application in buildings: GB 55015—2021[S]. Beijing: China Architecture & Building Press, 2021. | |
11 | ERMEL C, BIANCHI M V A, CARDOSO A P, et al. Thermal storage integrated into air-source heat pumps to leverage building electrification: A systematic literature review[J]. Applied Thermal Engineering, 2022, 215: 118975. |
12 | BAETEN B, ROGIERS F, HELSEN L. Reduction of heat pump induced peak electricity use and required generation capacity through thermal energy storage and demand response[J]. Applied Energy, 2017, 195: 184-195. |
13 | 严景好, 李杰, 李一鸣, 等. 基于梯度孔隙率金属泡沫的复合相变单元储热性能数值模拟[J]. 储能科学与技术, 2023, 12(8): 2424-2434. |
YAN J H, LI J, LI Y M, et al. Numerical simulation study on heat storage performance of composite phase-change units based on gradient-porosity metal foam[J]. Energy Storage Science and Technology, 2023, 12(8): 2424-2434. | |
14 | 戴宇成, 王增鹏, 刘凯豹, 等. 基于相变材料的储热器及其传热强化研究进展[J]. 储能科学与技术, 2023, 12(2): 431-458. |
DAI Y C, WANG Z P, LIU K B, et al. Research progress of heat storage and heat transfer enhancement based on phase change materials[J]. Energy Storage Science and Technology, 2023, 12(2): 431-458. | |
15 | INKERI E, TYNJÄLÄ T, NIKKU M. Numerical modeling of latent heat thermal energy storage integrated with heat pump for domestic hot water production[J]. Applied Thermal Engineering, 2022, 214: 118819. |
16 | LIU W Y, BIE Y, XU T, et al. Heat transfer enhancement of latent heat thermal energy storage in solar heating system: A state-of-the-art review[J]. Journal of Energy Storage, 2022, 46: 103727. |
17 | JIN X, ZHANG H H, HUANG G S, et al. Experimental investigation on the dynamic thermal performance of the parallel solar-assisted air-source heat pump latent heat thermal energy storage system[J]. Renewable Energy, 2021, 180: 637-657. |
18 | 刘伟, 李振明, 刘铭扬, 等. 高温相变储热材料制备与应用研究进展[J]. 储能科学与技术, 2023, 12(2): 398-430. |
LIU W, LI Z M, LIU M Y, et al. Review of high-temperature phase change heat storage material preparation and applications[J]. Energy Storage Science and Technology, 2023, 12(2): 398-430. | |
19 | 张亚磊, 崔海亭, 王晨, 等. 基于低谷电的太阳能-地源热泵相变蓄热供暖系统研究[J]. 储能科学与技术, 2023, 12(12): 3789-3798. |
ZHANG Y L, CUI H T, WANG C, et al. Research on a phase-change storage heating system of a solar-ground source heat pump based on low current[J]. Energy Storage Science and Technology, 2023, 12(12): 3789-3798. | |
20 | LE K X, HUANG M J, SHAH N N, et al. Techno-economic assessment of cascade air-to-water heat pump retrofitted into residential buildings using experimentally validated simulations[J]. Applied Energy, 2019, 250: 633-652. |
21 | 胡康, 徐飞, 陈磊, 等. 利用相变储热提升电力系统可再生能源消纳[J]. 工程热物理学报, 2018, 39(1): 1-7. |
HU K, XU F, CHEN L, et al. Improve the integration of renewable energy sources into power system by the usage of phase-change heat storage[J]. Journal of Engineering Thermophysics, 2018, 39(1): 1-7. | |
22 | WANG Y B, QUAN Z H, JING H R, et al. Performance and operation strategy optimization of a new dual-source building energy supply system with heat pumps and energy storage[J]. Energy Conversion and Management, 2021, 239: 114204. |
23 | JIN X, ZHENG S Q, HUANG G S, et al. Energy and economic performance of the heat pump integrated with latent heat thermal energy storage for peak demand shifting[J]. Applied Thermal Engineering, 2023, 218: 119337. |
24 | 常健, 宋航, 康宇震, 等. 高温复合相变储热在城市清洁能源改造中的应用[J]. 储能科学与技术, 2023, 12(11): 3471-3478. |
CHANG J, SONG H, KANG Y Z, et al. Application of high-temperature composite phase change heat storage in urban clean energy transformation[J]. Energy Storage Science and Technology, 2023, 12(11): 3471-3478. |
[1] | Lin LI. Technological landscape, challenges, and future outlook of the lithium-ion battery industry: An economic perspective [J]. Energy Storage Science and Technology, 2024, 13(1): 358-360. |
[2] | Yanjun BO, Xinjie XUE, Huaning WANG, Changying ZHAO. System design and experimental study of Carnot battery based on latent heat/cold stores [J]. Energy Storage Science and Technology, 2023, 12(9): 2823-2832. |
[3] | Yalei ZHANG, Haiting CUI, Chen WANG, Haosong CHEN, Chao WANG. Research on a phase-change storage heating system of a solar-ground source heat pump based on low current [J]. Energy Storage Science and Technology, 2023, 12(12): 3789-3798. |
[4] | Yanqin GUO, Zhen ZENG, Hongguang ZHANG, Ziye LING, Zhengguo ZHANG, Xiaoming FANG. Investigation of heat transfer enhancement mechanism and performance of phase change materials using expanded graphite in double helical coils [J]. Energy Storage Science and Technology, 2023, 12(12): 3678-3689. |
[5] | Chen WANG, Haiting CUI, Chao WANG, Yalei ZHANG, Haosong CHEN. Examination of the cross-seasonal phase-change heat storage performance of different U-shaped buried pipe structures [J]. Energy Storage Science and Technology, 2023, 12(12): 3808-3817. |
[6] | Jingjiao LI, Cuilei YANG, Wei LI. Research on computer software processing technology in thermal energy storage [J]. Energy Storage Science and Technology, 2023, 12(12): 3895-3897. |
[7] | Jian CHANG, Hang SONG, Yuzhen KANG, Tao LU, Zhiwei TANG. Application of high-temperature composite phase change heat storage in urban clean energy transformation [J]. Energy Storage Science and Technology, 2023, 12(11): 3471-3478. |
[8] | Jiangfeng LI, Shuaiqi LI, Xianzhen RUAN, Lei XU, Xiaochun ZHANG, Wenji SONG, Ziping FENG. Review of CO2 heat pump and thermal management for pure electric vehicle [J]. Energy Storage Science and Technology, 2022, 11(9): 2959-2970. |
[9] | Hao YIN, Zhiwei TANG, Hao WANG, Yi JIN, Yulong DING. Investigation on a time-sharing heating system using a high-density composite phase change heat storage material-an electric boiler [J]. Energy Storage Science and Technology, 2022, 11(9): 3003-3010. |
[10] | Feiyue TAO, Huanran WANG, Ruixiong LI, Jing ZHAO, Gangqiang GE, Xin HE, Hao CHEN. Thermodynamic analysis of a combined heating and power system coupled with carbon dioxide energy storage utilizing environmental recooling [J]. Energy Storage Science and Technology, 2022, 11(5): 1492-1501. |
[11] | Xiong LI, Peiqiang LI. Analysis of economics and economic boundaries of large-scale application of power batteries in cascade utilization [J]. Energy Storage Science and Technology, 2022, 11(2): 717-725. |
[12] | Yubo QI, Da GAO, Xianling ZHENG. Economic analysis of SPE hydrogen production technology in China [J]. Energy Storage Science and Technology, 2022, 11(12): 4038-4047. |
[13] | Jiamin LU, Junhui XU, Weidong WANG, Hao WANG, Zijun XU, Liuping CHEN. Development of large-scale underground hydrogen storage technology [J]. Energy Storage Science and Technology, 2022, 11(11): 3699-3707. |
[14] | Lan ZHAO, Guozhen WANG. Research progress on composite heat transfer enhancement technology of phase change heat storage system [J]. Energy Storage Science and Technology, 2022, 11(11): 3534-3547. |
[15] | Zijie XU, Yan WANG. Thermal storage properties of porous inorganic composite phase change material [J]. Energy Storage Science and Technology, 2022, 11(10): 3171-3179. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||