Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (11): 3471-3478.doi: 10.19799/j.cnki.2095-4239.2023.0459
• Energy Storage System and Engineering • Previous Articles Next Articles
Jian CHANG1(), Hang SONG1, Yuzhen KANG2, Tao LU2, Zhiwei TANG2()
Received:
2023-07-02
Revised:
2023-08-18
Online:
2023-11-05
Published:
2023-11-16
Contact:
Zhiwei TANG
E-mail:1323272495@qq.com;tangzhiw@263.net
CLC Number:
Jian CHANG, Hang SONG, Yuzhen KANG, Tao LU, Zhiwei TANG. Application of high-temperature composite phase change heat storage in urban clean energy transformation[J]. Energy Storage Science and Technology, 2023, 12(11): 3471-3478.
1 | MAGRO F D, MENEGHETTI A, NARDIN G, et al. Coupling waste heat extraction based on phase change material with steam generation: Evidence from steel industry[C]// 11th Conference on Sustainable Development of Energy, Water and Environmental Systems, 2016. |
2 | MAHFUZ M H, KAMYAR A, AFSHAR O, et al. Exergetic analysis of a solar thermal power system with PCM storage[J]. Energy Conversion and Management, 2014, 78: 486-492. |
3 | 郭璞维, 彭跃, 邓靖敏, 等. 烟气余热回收与储能技术耦合应用的可行性研究[J]. 华电技术, 2021, 43(9): 62-68. |
GUO P W, PENG Y, DENG J M, et al. Feasibility study on the coupling application of flue gas waste heat recovery and energy storage technology[J]. Huadian Technology, 2021, 43(9): 62-68. | |
4 | WU W X, YANG X Q, ZHANG G Q, et al. Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system[J]. Energy Conversion and Management, 2017, 138: 486-492. |
5 | 胡先锋. 复合相变储能材料的制备及其在光热系统中的应用[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
HU X F. Preparation of composite phase change energy storage materials and its application in photothermal system[D]. Harbin: Harbin Institute of Technology, 2020. | |
6 | 叶治洲. 电热储存系统中多孔基复合相变储热体研究[D]. 北京: 华北电力大学, 2020. |
YE Z Z. Research on porous matrix composite phase change thermal storage body in electric thermal energy storage system[D]. Beijing: North China Electric Power University, 2020. | |
7 | 中华人民共和国住房和城乡建设部. 严寒和寒冷地区居住建筑节能设计标准: JGJ 26—2010[S]. 北京: 中国建筑工业出版社, 2010. |
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Design standard for energy efficiency of residential buildings in severe cold and cold zones: JGJ 26—2010[S]. Beijing: China Architecture & Building Press, 2010. | |
8 | 中华人民共和国建设部, 国家质量监督检验检疫总局. 公共建筑节能设计标准: GB 50189—2005[S]. 北京: 中国建筑工业出版社, 2005. |
Ministry of Construction of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Design standard for energy efficiency of public buildings: GB 50189—2005[S]. Beijing: China Architecture & Building Press, 2005. | |
9 | 陆耀庆. 实用供热空调设计手册[M]. 2版. 北京: 中国建筑工业出版社, 2008: 1547-1560. |
LU Y Q. Practical heating and air conditioning design manual[M]. 2nd ed. Beijing: China Architecture & Building Press, 2008: 1547-1560. | |
10 | 李骥, 邹瑜, 魏峥. 建筑能耗模拟软件的特点及应用中存在的问题[J]. 建筑科学, 2010, 26(2): 24-28, 79. |
LI J, ZOU Y, WEI Z. Characteristics of simulation software of building energy consumption and problems existing in the application[J]. Building Science, 2010, 26(2): 24-28, 79. | |
11 | 刘涛. 基于TRNSYS的多源热电联产系统仿真模拟与性能分析[D]. 青岛: 青岛大学, 2020. |
LIU T. Simulation and performance analysis of multi-source cogeneration system based on TRNSYS[D]. Qingdao: Qingdao University, 2020. | |
12 | 孙林娜, 刘启明, 许抗吾, 等. 基于DeST及TRNSYS软件的公共建筑能耗模型分析[J]. 建筑节能(中英文), 2022, 50(10): 63-71. |
SUN L N, LIU Q M, XU K W, et al. Analysis of public building energy consumption model based on DeST and TRNSYS software[J]. Building Energy Efficiency, 2022, 50(10): 63-71. | |
13 | 王梦雪, 赵浩然, 田航, 等. 典型综合能源系统仿真与规划平台综述[J]. 电网技术, 2020, 44(12): 4702-4712. |
WANG M X, ZHAO H R, TIAN H, et al. Review of typical simulation and planning platforms for integrated energy system[J]. Power System Technology, 2020, 44(12): 4702-4712. | |
14 | 孙志鹏. 基于TRNSYS的北方农村地区多能源互补系统优化设计[J]. 节能技术, 2021, 39(2): 173-177. |
SUN Z P. Optimization design of multi-energy complementary system in northern rural areas using TRNSYS[J]. Energy Conservation Technology, 2021, 39(2): 173-177. |
[1] | Liyu ZHAO, Huanwu SUN, Shichuang LIU, Zhiyuan YAN. Energy consumption comparison and optimization of auxiliary power-battery heating system of heavy truck [J]. Energy Storage Science and Technology, 2023, 12(4): 1139-1147. |
[2] | Wei TAN, Ke MA, Weijing XU, Lin MI, Kaiyi CHEN. Design of a low-temperature rapid preheating system for an energy storage container battery system [J]. Energy Storage Science and Technology, 2023, 12(11): 3369-3378. |
[3] | Limu XIAO, Xin GAO, Shihai ZHANG, Xiankui WEN. Thermodynamic analysis on the liquid air energy storage system with liquid natural gas and organic Rankine cycle [J]. Energy Storage Science and Technology, 2023, 12(1): 155-164. |
[4] | Hao YIN, Zhiwei TANG, Hao WANG, Yi JIN, Yulong DING. Investigation on a time-sharing heating system using a high-density composite phase change heat storage material-an electric boiler [J]. Energy Storage Science and Technology, 2022, 11(9): 3003-3010. |
[5] | Jun WANG, Lin RUAN, Yanliang QIU. Research progress on rapid heating methods for lithium-ion battery in low-temperature [J]. Energy Storage Science and Technology, 2022, 11(5): 1563-1574. |
[6] | Feiyue TAO, Huanran WANG, Ruixiong LI, Jing ZHAO, Gangqiang GE, Xin HE, Hao CHEN. Thermodynamic analysis of a combined heating and power system coupled with carbon dioxide energy storage utilizing environmental recooling [J]. Energy Storage Science and Technology, 2022, 11(5): 1492-1501. |
[7] | Suhang WANG, Jianlin LI, Yaxin LI, Junjie XIONG, Wei ZENG. Research on charging strategy of lithium-ion battery system at low temperature [J]. Energy Storage Science and Technology, 2022, 11(5): 1537-1542. |
[8] | Dongdong ZHANG, Hua WEN, Hongwei OUYANG. Research on low-temperature pulse heating of a battery based on an electrochemical-thermal coupled model [J]. Energy Storage Science and Technology, 2022, 11(12): 3957-3964. |
[9] | Jiukang TENG, Ningning WU, Chang WANG, Qingjie WANG, Bin SHI. Preparation and electrochemical performance of high capacity chromium oxide Cr8O21 cathode materials for lithium primary batteries [J]. Energy Storage Science and Technology, 2022, 11(11): 3455-3462. |
[10] | Kuining LI, Jinghong WANG, Yi XIE, Bin LIU, Jiangyan LIU, Zhaoting LIU. Low-temperature compound-heating strategy and optimization of lithium-ion battery [J]. Energy Storage Science and Technology, 2022, 11(10): 3191-3199. |
[11] | Hongzhang ZHU, Chuanping WU, Tiannian ZHOU, Jie DENG. Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating [J]. Energy Storage Science and Technology, 2022, 11(1): 201-210. |
[12] | Yingying WANG, Dekun FU, Mingbiao CHEN, Wenji SONG, Ziping FENG. Economy of ice source heat pump clean heating system in cold winter zone [J]. Energy Storage Science and Technology, 2021, 10(4): 1380-1387. |
[13] | Yanfeng TIAN, Xinxin ZHAO, Qitong FU, Zhe WANG, Xuzhang ZHAO. Structure analysis of high temperature heat storage conductor based on thermal-electricity-magnetic field coupling [J]. Energy Storage Science and Technology, 2021, 10(3): 1051-1059. |
[14] | Xuqing YANG, Zhenzhu YU, Xiaohu YANG, Zhan LIU. Combined heating and power system coupled with compressed air energy storage and absorption heat pump cycle [J]. Energy Storage Science and Technology, 2021, 10(1): 362-369. |
[15] | Zhenshuai YANG, Huanran WANG, Ruixiong LI, Yan ZHANG, Hao CHEN, Zhibo LI, Erren YAO. A novel combined cooling heating and power system with coupled compressed air energy storage and supercharged diesel engine [J]. Energy Storage Science and Technology, 2020, 9(6): 1917-1925. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||