Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (10): 3191-3199.doi: 10.19799/j.cnki.2095-4239.2022.0205
• Energy Storage System and Engineering • Previous Articles Next Articles
Kuining LI1,2(), Jinghong WANG1,2, Yi XIE3, Bin LIU1,2, Jiangyan LIU1,2, Zhaoting LIU1,2
Received:
2022-04-15
Revised:
2022-05-10
Online:
2022-10-05
Published:
2022-10-10
Contact:
Kuining LI
E-mail:leekn@cqu.edu.cn
CLC Number:
Kuining LI, Jinghong WANG, Yi XIE, Bin LIU, Jiangyan LIU, Zhaoting LIU. Low-temperature compound-heating strategy and optimization of lithium-ion battery[J]. Energy Storage Science and Technology, 2022, 11(10): 3191-3199.
Table 6
Optimization target value of heating strategies in different initial states"
初始SOC | T0/℃ | t/s | Qgain/Ah | Qloss/‱ | 初始SOC | T0/℃ | t/s | Qgain/Ah | Qloss/‱ |
---|---|---|---|---|---|---|---|---|---|
1.0 | 0 | 53 | 1.44 | 0.322 | 0.4 | 0 | 52 | 0.37 | 0.324 |
1.0 | -5 | 128 | 2.06 | 0.351 | 0.4 | -5 | 112 | 0.49 | 0.360 |
1.0 | -10 | 161 | 2.88 | 0.402 | 0.4 | -10 | 155 | 0.70 | 0.407 |
1.0 | -15 | 248 | 3.86 | 0.448 | 0.4 | -15 | 212 | 0.92 | 0.444 |
1.0 | -20 | 253 | 4.72 | 0.482 | 0.4 | -20 | 267 | 1.17 | 0.479 |
0.7 | 0 | 52 | 0.91 | 0.324 | 0.1 | 0 | 52 | -0.16 | 0.320 |
0.7 | -5 | 115 | 1.28 | 0.359 | 0.1 | -5 | 109 | -0.29 | 0.356 |
0.7 | -10 | 167 | 1.78 | 0.403 | 0.1 | -10 | 149 | -0.37 | 0.403 |
0.7 | -15 | 233 | 2.34 | 0.444 | 0.1 | -15 | 198 | -0.45 | 0.440 |
0.7 | -20 | 273 | 2.89 | 0.477 | 0.1 | -20 | 243 | -0.52 | 0.475 |
1 | SUN F C, XIONG R, HE H W. A systematic state-of-charge estimation framework for multi-cell battery pack in electric vehicles using bias correction technique[J]. Applied Energy, 2016, 162: 1399-1409. |
2 | SAW L H, POON H M, THIAM H S, et al. Novel thermal management system using mist cooling for lithium-ion battery packs[J]. Applied Energy, 2018, 223: 146-158. |
3 | JI Y, ZHANG Y C, WANG C Y. Li-ion cell operation at low temperatures[J]. Journal of the Electrochemical Society, 2013, 160(4): A636-A649. |
4 | LI J, YUAN C F, GUO Z H, et al. Limiting factors for low-temperature performance of electrolytes in LiFePO4/Li and graphite/Li half cells[J]. Electrochimica Acta, 2012, 59: 69-74. |
5 | ZHANG S S, XU K, JOW T R. Low temperature performance of graphite electrode in Li-ion cells[J]. Electrochimica Acta, 2002, 48(3): 241-246. |
6 | ZHANG S S, XU K, JOW T R. A new approach toward improved low temperature performance of Li-ion battery[J]. Electrochemistry Communications, 2002, 4(11): 928-932. |
7 | FAN J, TAN S. Studies on charging lithium-ion cells at low temperatures[J]. Journal of the Electrochemical Society, 2006, 153(6): A1081. |
8 | NAGASUBRAMANIAN G. Electrical characteristics of 18650 Li-ion cells at low temperatures[J]. Journal of Applied Electrochemistry, 2001, 31: 99-104. |
9 | SUN B X, JIANG J C, ZHENG F D, et al. Practical state of health estimation of power batteries based on Delphi method and grey relational grade analysis[J]. Journal of Power Sources, 2015, 282: 146-157. |
10 | CHO H M, CHOI W S, GO J Y, et al. A study on time-dependent low temperature power performance of a lithium-ion battery[J]. Journal of Power Sources, 2012, 198: 273-280. |
11 | SHANG Y L, ZHU C, FU Y H, et al. An integrated heater equalizer for lithium-ion batteries of electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2019, 66(6): 4398-4405. |
12 | GHADBEIGI L, DAY B, LUNDGREN K, et al. Cold temperature performance of phase change material based battery thermal management systems[J]. Energy Reports, 2018, 4: 303-307. |
13 | HUANG D Y, CHEN Z Q, ZHOU S Y. Model prediction-based battery-powered heating method for series-connected lithium-ion battery pack working at extremely cold temperatures[J]. Energy, 2021, 216: doi:10.1016/j.energy.2020.119236. |
14 | YANG X G, GE S, WU N, et al. All-climate battery technology for electric vehicles: Inching closer to the mainstream adoption of automated driving[J]. IEEE Electrification Magazine, 2019, 7(1): 12-21. |
15 | WANG C Y, ZHANG G S, GE S H, et al. Lithium-ion battery structure that self-heats at low temperatures[J]. Nature, 2016, 529(7587): 515-518. |
16 | RUAN H J, JIANG J C, SUN B X, et al. A rapid low-temperature internal heating strategy with optimal frequency based on constant polarization voltage for lithium-ion batteries[J]. Applied Energy, 2016, 177: 771-782. |
17 | MOHAN S, SIEGEL J B, STEFANOPOULOU A G, et al. An energy-optimal warm-up strategy for Li-ion batteries and its approximations[J]. IEEE Transactions on Control Systems Technology, 2019, 27(3): 1165-1180. |
18 | GUO S S, XIONG R, SHEN W X, et al. Aging investigation of an echelon internal heating method on a three-electrode lithium ion cell at low temperatures[J]. Journal of Energy Storage, 2019, 25: doi:10.1016/j.est.2019.100878. |
19 | JIANG J C, RUAN H J, SUN B X, et al. A low-temperature internal heating strategy without lifetime reduction for large-size automotive lithium-ion battery pack[J]. Applied Energy, 2018, 230: 257-266. |
20 | XIE Y, LI W, YANG Y, et al. A novel resistance-based thermal model for lithium-ion batteries[J]. International Journal of Energy Research, 2018, 42(14): 4481-4498 |
21 | 李夔宁, 何铖, 谢翌, 等. 大倍率放电工况下48 V软包电池包的热管理[J]. 储能科学与技术, 2021, 10(2): 679-688. |
LI K N, HE C, XIE Y, et al. Thermal management of a 48 V pouch lithium-ion battery pack based on high rate discharge condition[J]. Energy Storage Science and Technology, 2021, 10(2): 679-688. |
[1] | Linwang DENG, Tianyu FENG, Shiwei SHU, Zifeng ZHANG, Bin GUO. Review of a fast-charging strategy and technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2879-2890. |
[2] | Zhizhan LI, Jinlei QIN, Jianing LIANG, Zhengrong LI, Rui WANG, Deli WANG. High-nickel ternary layered cathode materials for lithium-ion batteries: Research progress, challenges and improvement strategies [J]. Energy Storage Science and Technology, 2022, 11(9): 2900-2920. |
[3] | Xiaoyu CHEN, Mengmeng GENG, Qiankun WANG, Jiani SHEN, Yijun HE, Zifeng MA. Electrochemical impedance feature selection and gaussian process regression based on the state-of-health estimation method for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2995-3002. |
[4] | Yang WANG, Xu LU, Yuxin ZHANG, Long LIU. Thermal runaway exhaust strategy of power battery [J]. Energy Storage Science and Technology, 2022, 11(8): 2480-2487. |
[5] | Qingsong ZHANG, Yang ZHAO, Tiantian LIU. Effects of state of charge and battery layout on thermal runaway propagation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2519-2525. |
[6] | Yong MA, Xiaohan LI, Lei SUN, Dongliang GUO, Jinggang YANG, Jianjun LIU, Peng XIAO, Guangjun QIAN. Parameter design of lithium-ion batteries based on a three-dimensional electrochemical thermal coupling lithium precipitation model [J]. Energy Storage Science and Technology, 2022, 11(8): 2600-2611. |
[7] | Liang TANG, Xiaobo YIN, Houfu WU, Pengjie LIU, Qingsong WANG. Demand for safety standards in the development of the electrochemical energy storage industry [J]. Energy Storage Science and Technology, 2022, 11(8): 2645-2652. |
[8] | Liping HUO, Weiling LUAN, Zixian ZHUANG. Development trend of lithium-ion battery safety technology for energy storage [J]. Energy Storage Science and Technology, 2022, 11(8): 2671-2680. |
[9] | Zhicheng CAO, Kaiyun ZHOU, Jiali ZHU, Gaoming LIU, Min YAN, Shun TANG, Yuancheng CAO, Shijie CHENG, Weixin ZHANG. Patent analysis of fire-protection technology of lithium-ion energy storage system [J]. Energy Storage Science and Technology, 2022, 11(8): 2664-2670. |
[10] | Yue ZHANG, Depeng KONG, Ping PING. Performance and design optimization of a cold plate for inhibiting thermal runaway propagation of lithium-ion battery packs [J]. Energy Storage Science and Technology, 2022, 11(8): 2432-2441. |
[11] | Chengshan XU, Borui LU, Mengqi ZHANG, Huaibin WANG, Changyong JIN, Minggao OUYANG, Xuning FENG. Study on thermal runaway gas evolution in the lithium-ion battery energy storage cabin [J]. Energy Storage Science and Technology, 2022, 11(8): 2418-2431. |
[12] | Tao SUN, Tengteng SHEN, Xin LIU, Dongsheng REN, Jinhai LIU, Yuejiu ZHENG, Luyan WANG, Languang LU, Minggao OUYANG. Application of titration gas chromatography technology in the quantitative detection of lithium plating in Li-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2564-2573. |
[13] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[14] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[15] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||