Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (3): 1059-1073.doi: 10.19799/j.cnki.2095-4239.2023.0798
• Technical Economic Analysis of Energy Storage • Previous Articles Next Articles
Tianchen ZHAO1(), Gong ZHANG1, Yunfei ZHANG1, Shihao HOU2, Tingting WANG3
Received:
2023-11-07
Revised:
2023-12-18
Online:
2024-03-28
Published:
2024-03-28
Contact:
Tianchen ZHAO
E-mail:1104464642@qq.com
CLC Number:
Tianchen ZHAO, Gong ZHANG, Yunfei ZHANG, Shihao HOU, Tingting WANG. Technical and economic research on the capacity of supply assurance for pumped-storage systems under the target of “dual carbon”[J]. Energy Storage Science and Technology, 2024, 13(3): 1059-1073.
Table 4
Annual system operation after adding pumped storage capacity in 2030"
新增抽蓄容量 /万千瓦 | 抽水蓄能年利用时长/h | 发电量/亿千瓦时 | 碳排放量/ 百万吨 | 风光弃电率 /% | 系统备用率 最低值/% | |||||
---|---|---|---|---|---|---|---|---|---|---|
风电 | 光伏 | 燃煤 | 水电 | 核电 | 燃气 | |||||
0 | 0 | 330.6 | 348.6 | 2590.4 | 351.3 | 1445 | 304.2 | 226.4 | 16.2 | 1.9 |
120 | 3380 | 337.5 | 359.2 | 2589.8 | 354.3 | 1445 | 286.4 | 225.1 | 14.0 | 2.7 |
240 | 3380 | 343.8 | 368.8 | 2587.9 | 356.7 | 1445 | 273.1 | 224.0 | 12.1 | 3.6 |
360 | 3380 | 349.7 | 377.8 | 2582.6 | 358.8 | 1445 | 264.9 | 222.9 | 10.2 | 4.4 |
480 | 3380 | 354.9 | 385.6 | 2579.8 | 360.5 | 1445 | 256.9 | 222.0 | 8.6 | 5.3 |
600 | 3380 | 359.9 | 392.5 | 2573.6 | 361.9 | 1445 | 254.4 | 221.8 | 7.1 | 6.4 |
720 | 3379 | 364 | 398.5 | 2567.3 | 363.1 | 1445 | 254.1 | 221.4 | 5.9 | 7.1 |
840 | 3365 | 367.8 | 403.7 | 2560.6 | 364 | 1445 | 254.1 | 219.6 | 4.8 | 7.9 |
960 | 3352 | 370.9 | 408.1 | 2557.2 | 364.9 | 1445 | 254.1 | 219.0 | 3.8 | 8.7 |
1080 | 3329 | 373.2 | 411.7 | 2555.5 | 365.7 | 1445 | 254.1 | 218.4 | 3.1 | 9.6 |
1200 | 3297 | 375.3 | 414.5 | 2553.1 | 366.3 | 1445 | 254.1 | 218.0 | 2.5 | 10.4 |
Table 5
Annual system operation after adding new thermal power peak shaving unit capacity in 2030"
新增火电容量/万千瓦 | 抽水蓄能年利用时长/h | 发电量/亿千瓦时 | 碳排放量/ 百万吨 | 风光弃电率/% | 系统备用率 最低值/% | |||||
---|---|---|---|---|---|---|---|---|---|---|
风电 | 光伏 | 燃煤 | 水电 | 核电 | 燃气 | |||||
0 | — | 330.6 | 348.6 | 2590.4 | 351.3 | 1445 | 304.2 | 226.4 | 16.2 | 1.9 |
120 | — | 330.5 | 348.4 | 2618.7 | 351.1 | 1445 | 280.4 | 227.2 | 16.2 | 2.7 |
240 | — | 330 | 347.6 | 2642.9 | 351.1 | 1445 | 261.1 | 228.4 | 16.3 | 3.5 |
360 | — | 330.5 | 346.4 | 2657 | 350.9 | 1445 | 240.9 | 229.7 | 16.4 | 4.3 |
480 | — | 329.7 | 347 | 2695.4 | 350.9 | 1445 | 223.9 | 230.9 | 16.5 | 5.1 |
600 | — | 329.6 | 344.6 | 2698.4 | 350.4 | 1445 | 209.4 | 231.6 | 16.8 | 5.9 |
720 | — | 329.6 | 344.3 | 2705.7 | 350.4 | 1445 | 194 | 232.7 | 16.8 | 6.7 |
840 | — | 329.7 | 346.6 | 2717.8 | 350.8 | 1445 | 182.9 | 233.3 | 16.5 | 7.6 |
960 | — | 329.4 | 344 | 2739.7 | 350.3 | 1445 | 169.3 | 234.1 | 16.9 | 8.4 |
1080 | — | 329.8 | 344.4 | 2757.2 | 350.3 | 1445 | 161.6 | 234.9 | 16.8 | 9.2 |
1200 | — | 328.1 | 341 | 2770.5 | 349.8 | 1445 | 153.5 | 235.3 | 16.4 | 10.1 |
Table 7
Comprehensive annual cost of various schemes for newly added pumped storage energy in 2030"
新增抽蓄容量/万千瓦 | 碳排放量/ 百万吨 | 风光弃电率/% | 年度投资成本 /亿元 | 年度运维成本 /亿元 | 年度可变成本 /亿元 | 年度环境成本 /亿元 | 综合年度成本 /亿元 |
---|---|---|---|---|---|---|---|
0 | 226.4 | 16.2 | 0 | 0 | 0 | 0 | 0 |
120 | 225.1 | 14.0 | 4.80 | 1.15 | 7.18 | -1.01 | 12.13 |
240 | 224.0 | 12.1 | 9.60 | 2.30 | 14.36 | -1.85 | 24.41 |
360 | 222.9 | 10.2 | 14.40 | 3.46 | 21.54 | -2.69 | 36.70 |
480 | 222.0 | 8.6 | 19.20 | 4.61 | 28.72 | -3.39 | 49.14 |
600 | 221.8 | 7.1 | 24.00 | 5.76 | 35.90 | -3.54 | 62.11 |
720 | 221.4 | 5.9 | 28.80 | 6.91 | 43.06 | -3.85 | 74.92 |
840 | 219.6 | 4.8 | 33.60 | 8.06 | 50.03 | -5.24 | 86.46 |
960 | 219.0 | 3.8 | 38.40 | 9.22 | 56.96 | -5.70 | 98.88 |
1080 | 218.4 | 3.1 | 43.20 | 10.37 | 63.64 | -6.16 | 111.05 |
1200 | 218.0 | 2.5 | 48.00 | 11.52 | 70.03 | -6.47 | 123.08 |
Table 8
Comprehensive annual cost of various schemes for newly added thermal power units in 2030"
新增抽蓄容量/万千瓦 | 碳排放量/ 百万吨 | 风光弃电率/% | 年度投资成本 /亿元 | 年度运维成本 /亿元 | 年度可变成本 /亿元 | 年度环境成本 /亿元 | 综合年度成本 /亿元 |
---|---|---|---|---|---|---|---|
0 | 226.4 | 16.2 | 0 | 0 | 0 | 0 | 0 |
120 | 227.2 | 16.2 | 3.54 | 1.60 | 11.32 | 2.58 | 19.04 |
240 | 228.0 | 16.3 | 7.08 | 3.19 | 21.00 | 6.45 | 37.73 |
360 | 228.7 | 16.4 | 10.62 | 4.79 | 26.64 | 10.65 | 52.70 |
480 | 229.1 | 16.5 | 14.16 | 6.38 | 42.00 | 14.52 | 77.07 |
600 | 229.4 | 16.8 | 17.70 | 7.98 | 43.20 | 16.78 | 85.66 |
720 | 229.7 | 16.8 | 21.24 | 9.58 | 46.12 | 20.33 | 97.27 |
840 | 230.1 | 16.5 | 24.78 | 11.17 | 50.96 | 22.27 | 109.18 |
960 | 230.3 | 16.9 | 28.32 | 12.77 | 59.72 | 24.85 | 125.66 |
1080 | 230.7 | 16.8 | 31.86 | 14.36 | 66.72 | 27.43 | 140.37 |
1200 | 231.0 | 16.4 | 35.40 | 15.96 | 72.04 | 28.72 | 152.12 |
Table 10
Annual system operation after configuring new energy storage by 2030"
新增新型储能容量 /万千瓦 | 发电量/亿千瓦时 | 碳排放量 /百万吨 | 风光弃电率/% | 系统备用率 最低值/% | |||||
---|---|---|---|---|---|---|---|---|---|
风电 | 光伏 | 燃煤 | 水电 | 核电 | 燃气 | ||||
0 | 330.6 | 348.6 | 2590.4 | 351.3 | 1445 | 304.2 | 226.4 | 16.2 | 1.9 |
120 | 336.2 | 356.2 | 2589.9 | 352.7 | 1445 | 282.5 | 225.4 | 15.1 | 2.7 |
240 | 342.8 | 362.8 | 2588.9 | 354.5 | 1445 | 275.6 | 224.6 | 12.6 | 3.6 |
360 | 347.9 | 377.4 | 2585.6 | 356.1 | 1445 | 262.3 | 223.5 | 11.2 | 4.4 |
480 | 351.9 | 385.1 | 2580.8 | 358.4 | 1445 | 258.9 | 222.9 | 8.9 | 5.3 |
600 | 356.6 | 392.2 | 2576.6 | 360.3 | 1445 | 255.2 | 222.4 | 7.8 | 6.3 |
720 | 364.5 | 398.2 | 2569.3 | 362.2 | 1445 | 254.7 | 221.7 | 6.9 | 7.2 |
840 | 368.8 | 403.5 | 2565.6 | 363.5 | 1445 | 254.1 | 220.5 | 5.6 | 7.9 |
960 | 370.9 | 408.1 | 2560.2 | 364.1 | 1445 | 254.1 | 219.6 | 4.8 | 8.6 |
1080 | 372.2 | 411.2 | 2558.5 | 364.7 | 1445 | 254.1 | 218.9 | 3.9 | 9.4 |
1200 | 373.1 | 412.3 | 2556.2 | 365.2 | 1445 | 254.1 | 218.6 | 3.2 | 10.2 |
Table 11
Comprehensive annual cost of various schemes for newly added pumped storage energy in 2030"
新增新型储能容量/万千瓦 | 碳排放量/百万吨 | 风光弃电率/% | 年度投资成本 /亿元 | 年度运维成本 /亿元 | 年度可变成本 /亿元 | 年度环境成本 /亿元 | 综合年度成本 /亿元 |
---|---|---|---|---|---|---|---|
0 | 226.4 | 16.2 | 0.00 | 0.00 | 0.00 | 0 | 0.00 |
120 | 225.4 | 15.1 | 7.90 | 0.93 | 5.66 | -0.87 | 13.62 |
240 | 224.6 | 12.6 | 15.80 | 1.86 | 11.25 | -1.76 | 27.15 |
360 | 223.5 | 11.2 | 23.70 | 2.79 | 17.36 | -2.37 | 41.48 |
480 | 222.9 | 8.9 | 31.60 | 3.72 | 23.44 | -2.89 | 55.87 |
600 | 222.4 | 7.8 | 39.50 | 4.65 | 31.79 | -3.12 | 72.82 |
720 | 221.7 | 6.9 | 47.40 | 5.58 | 37.16 | -3.47 | 86.67 |
840 | 220.5 | 5.6 | 55.30 | 6.51 | 42.32 | -4.66 | 99.47 |
960 | 219.6 | 4.8 | 63.20 | 7.44 | 49.67 | -5.13 | 115.18 |
1080 | 218.9 | 3.9 | 71.10 | 8.37 | 58.52 | -5.72 | 132.27 |
1200 | 218.6 | 3.2 | 79.00 | 9.32 | 65.23 | -6.01 | 147.54 |
1 | 韩肖清, 李廷钧, 张东霞, 等. 双碳目标下的新型电力系统规划新问题及关键技术[J]. 高电压技术, 2021, 47(9): 3036-3046. |
HAN X Q, LI T J, ZHANG D X, et al. New issues and key technologies of new power system planning under double carbon goals[J]. High Voltage Engineering, 2021, 47(9): 3036-3046. | |
2 | 李晖, 刘栋, 姚丹阳. 面向碳达峰碳中和目标的我国电力系统发展研判[J]. 中国电机工程学报, 2021, 41(18): 6245-6258, 10. |
LI H, LIU D, YAO D Y. Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality[J]. Proceedings of the CSEE, 2021, 41(18): 6245-6258, 10. | |
3 | 魏旭, 刘东, 高飞, 等. 双碳目标下考虑源网荷储协同优化运行的新型电力系统发电规划[J]. 电网技术, 2023, 47(9): 3648-3661. |
WEI X, LIU D, GAO F, et al. Generation expansion planning of new power system considering collaborative optimal operation of source-grid-load-storage under carbon peaking and carbon neutrality[J]. Power System Technology, 2023, 47(9): 3648-3661. | |
4 | 蒋光梓, 彭杨, 纪昌明, 等. 计及价格型需求响应的水风光互补短期调度[J]. 水力发电学报, 2023, 42(10): 1-12. |
JIANG G Z, PENG Y, JI C M, et al. Hydro-wind-solar power complementary short-term optimal scheduling considering participation of price-based demand response[J]. Journal of Hydroelectric Engineering, 2023, 42(10): 1-12. | |
5 | 蔡国伟, 孔令国, 杨德友, 等. 大规模风光互补发电系统建模与运行特性研究[J]. 电网技术, 2012, 36(1): 65-71. |
CAI G W, KONG L G, YANG D Y, et al. Research on modelling and operation characteristics analysis of large-scale wind & light complementary electricity-generating system[J]. Power System Technology, 2012, 36(1): 65-71. | |
6 | 康重庆, 姚良忠. 高比例可再生能源电力系统的关键科学问题与理论研究框架[J]. 电力系统自动化, 2017, 41(9): 2-11. |
KANG C Q, YAO L Z. Key scientific issues and theoretical research framework for power systems with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41(9): 2-11. | |
7 | 汪宁渤, 马明, 强同波, 等. 高比例新能源电力系统的发展机遇、挑战及对策[J]. 中国电力, 2018, 51(1): 29-35, 50. |
WANG N B, MA M, QIANG T B, et al. High-penetration new energy power system development: Challenges, opportunities and countermeasures[J]. Electric Power, 2018, 51(1): 29-35, 50. | |
8 | 刘帅, 吴胜洋, 刘卫亮, 等.计及不确定性的风光抽蓄发电系统容量优化[J/OL]. 水力发电学报: 1-12[2023-10-30]. |
LIU S, WU S Y, LIU W L, et al. Capacity optimization of wind-solar pumped storage power generation system taking into account uncertainty[J/OL]. Journal of Hydroelectric Engineering, 1-12[2023-10-30]. | |
9 | 宋宇, 李涵, 楚皓翔, 等. 计及可靠性的风光互补发电系统容量优化配比研究[J]. 电气技术, 2022, 23(6): 49-58, 68. |
SONG Y, LI H, CHU H X, et al. Optimal proportion study of wind-solar hybrid generation system considering reliability[J]. Electrical Engineering, 2022, 23(6): 49-58, 68. | |
10 | 畅彩娥. 陕西电网建设抽水蓄能电站的作用与效益分析[J]. 西北水电, 2015(5): 5-7. |
CHANG C E. Analysis on functions and benefits of pumped storage power plants in Shaanxi power grid[J]. Northwest Hydropower, 2015(5): 5-7. | |
11 | 刘凯. 分布式光伏电站与抽水蓄能联合运行研究[D]. 成都: 电子科技大学, 2020. |
LIU K. Study on joint operation of distributed photovoltaic power station and pumped storage[D].Chengdu: University of Electronic Science and Technology of China, 2020. | |
12 | 李北晨. 考虑新能源消纳的抽水蓄能服务电网能力评估及规划研究[D]. 北京: 华北电力大学, 2021. |
LI B C. Study on serving power grids and planning method for pumped-storage station considering the consumption of new energy[D]. Beijing: North China Electric Power University, 2021. | |
13 | 李守东. 大规模储能与高渗透率新能源的协调调度策略研究[D]. 兰州: 兰州交通大学, 2019. |
LI S D. Research on coordinated scheduling strategy for large-scale energy storage and high-permeability new energy[D].Lanzhou: Lanzhou Jiatong University, 2019. | |
14 | 张粒子, 许通, 宋少群, 等. 电力市场中发电容量充裕性评估方法及保障机制[J]. 电力系统自动化, 2020, 44(18): 55-63. |
ZHANG L Z, XU T, SONG S Q, et al. Evaluation method and guarantee mechanism of power generation capacity adequacy in electricity market[J]. Automation of Electric Power Systems, 2020, 44(18): 55-63. | |
15 | 刘明浩, 王丽萍, 李传刚, 等. 减少弃水电量的抽水蓄能电站运行方式研究[J]. 水力发电学报, 2016, 35(12): 45-55. |
LIU M H, WANG L P, LI C G, et al. Analysis on operation of pumped storage power plants for reducing surplus water[J]. Journal of Hydroelectric Engineering, 2016, 35(12): 45-55. | |
16 | 周建平, 杜效鹄, 周兴波. 新型电力系统中水电的作用及发展规划研究[J/OL]. 水力发电学报:1-12[2023-11-01]. |
ZHOU J P, DU X H, ZHOU X B. Study on the role of hydropower in the new power system and its development planning[J]. Journal of Hydroelectric Engineering, 1-12[2023-11-01]. | |
17 | 谭显东, 刘俊, 徐志成, 等. "双碳" 目标下"十四五" 电力供需形势[J]. 中国电力, 2021, 54(5): 1-6. |
TAN X D, LIU J, XU Z C, et al. Power supply and demand balance during the 14th five-year plan period under the goal of carbon emission peak and carbon neutrality[J]. Electric Power, 2021, 54(5): 1-6. | |
18 | 李明节, 陈国平, 董存, 等. 新能源电力系统电力电量平衡问题研究[J]. 电网技术, 2019, 43(11): 3979-3986. |
LI M J, CHEN G P, DONG C, et al. Research on power balance of high proportion renewable energy system[J]. Power System Technology, 2019, 43(11): 3979-3986. | |
19 | 辛保安, 陈梅, 赵鹏, 等. 碳中和目标下考虑供电安全约束的我国煤电退减路径研究[J]. 中国电机工程学报, 2022, 42(19): 6919-6930. |
XIN B A, CHEN M, ZHAO P, et al. Research on coal power generation reduction path considering power supply adequacy constraints under carbon neutrality target in China[J]. Proceedings of the CSEE, 2022, 42(19): 6919-6930. | |
20 | 倪晋兵, 张云飞, 施浩波, 等. 基于时序生产模拟的抽水蓄能促进新能源消纳作用量化研究[J].电网技术, 2023, 47(7): 2799-2809. |
NI J B, ZHANG Y F, SHI H B, et al. Pumped storage quantification in promoting new energy consumption based on time series production simulation[J]. Power System Technology, 2023, 47(7): 2799-2809. | |
21 | 庞锋, 项华伟, 吴迪, 等. 基于电力支撑的新型电力系统电力电量平衡[J]. 水力发电学报, 2023, 42(9): 88-100. |
PANG F, XIANG H W, WU D, et al. Electric power-energy balance in new-type power system based on power support[J]. Journal of Hydroelectric Engineering, 2023, 42(9): 88-100. | |
22 | 陈典, 陆润钊, 张健, 等. 实用化水火风光系统时序电力电量平衡方法[J]. 水力发电学报, 2023, 42(5): 25-34. |
CHEN D, LU R Z, ZHANG J, et al. Sequential power and energy balance practical method for hydro-thermal-wind-solar power systems[J]. Journal of Hydroelectric Engineering, 2023, 42(5): 25-34. | |
23 | 刘德旭, 刘艳, 潘永旗, 等. 基于可再生能源发电优先消纳的电力电量平衡模型研究[J]. 电网与清洁能源, 2020, 36(1): 64-71. |
LIU D X, LIU Y, PAN Y Q, et al. Research on power balance model based on priority consumption of renewable energy power generation[J]. Power System and Clean Energy, 2020, 36(1): 64-71. | |
24 | 张云飞, 张弓, 徐三敏, 等. 抽水蓄能联合新能源替代火电参与电力电量平衡能力研究[J]. 水电与抽水蓄能, 2022, 8(6): 26-31. |
ZHANG Y F, ZHANG G, XU S M, et al. Study on the ability of pumped storage combined with new energy to replace thermal power to participate in power balance[J]. Hydropower and Pumped Storage, 2022, 8(6): 26-31. | |
25 | 纪昌明, 赵亚威, 张验科, 等. 考虑弃水电量成本的短期电力电量平衡模型[J]. 水力发电学报, 2021, 40(3): 50-63. |
JI C M, ZHAO Y W, ZHANG Y K, et al. Short-term power balance model considering cost of abandoned hydropower[J]. Journal of Hydroelectric Engineering, 2021, 40(3): 50-63. | |
26 | 生态环境部办公厅. 2021、2022年度全国碳排放交易配额总量设定与分配实施方案[R]. 2022. |
Office of the Ministry of Ecology and Environment. Implementation plan for setting and allocating total national carbon emission trading allowances for the years 2021 and 2022[R]. 2022. | |
27 | 张嘉睿, 霍现旭, 李树鹏, 等. 基于全寿命周期等年值成本的蓄热式电取暖方案经济性评估[J]. 电力需求侧管理, 2020, 22(3): 26-32. |
ZHANG J R, HUO X X, LI S P, et al. Economic evaluation of regenerative electric heating based on equivalent annual cost in life cycle[J]. Power Demand Side Management, 2020, 22(3): 26-32. | |
28 | 国家发改委. 国家发展改革委关于抽水蓄能电站容量电价及有关事项的通知[R]. 2023. |
NDRC. Circular of the National Development and Reform Commission on capacity tariffs for pumped storage power plants and related matters[R]. 2023. | |
29 | 江天生. 天然气发电项目的经济性分析[D]. 北京: 清华大学, 2004. |
JIANG T S. Economic analysis on gas generation power plants[D]. Beijing: Tsinghua University, 2004. | |
30 | 国家发改委. 国家发展改革委关于进一步完善抽水蓄能价格形成机制的意见[R]. 2021. |
NDRC. Opinions of the National Development and Reform Commission on further improving the price formation mechanism for pumped storage energy[R]. 2021. | |
31 | BERGSTROM J, TY D. Economics of carbon capture and storage[R]. GCCSI, 2017. |
[1] | Xiaying XIAO, Chuanguang FAN, Feng GUO, Tianxin YANG, Dong WANG, Yunhui HUANG. Optimal allocation of energy storage power station based on improved multi-objective particle swarm optimization [J]. Energy Storage Science and Technology, 2024, 13(2): 503-514. |
[2] | Xinlei CAI, Jinzhou ZHU, Mai LIU, Jiale LIU, Zijie MENG, Yang YU. Peak shaving strategy of electric vehicles based on an improved Dingo optimization algorithm [J]. Energy Storage Science and Technology, 2023, 12(6): 1913-1919. |
[3] | Jian HU, Yujie REN, Jinkui DU, Yuan LIU, Dan LIU. Optimal scheduling of an integrated wind/solar/gas cogeneration energy system with phase change energy storage [J]. Energy Storage Science and Technology, 2023, 12(3): 968-975. |
[4] | Xin WU, Wenju SHANG, Zhiyong MA, Wei TENG, Shuang ZHANG, Hairong LUO. Coordinated control method for pumped and flywheel hybrid energy storage system [J]. Energy Storage Science and Technology, 2023, 12(2): 468-476. |
[5] | Jie SONG, Linxiao GENG, Yongfu SANG, Rongbin WEN, Peng SUN, Linjuan GONG. Study on primary frequency modulation capacity planning of thermal power unit assisted by hybrid energy storage based on EMD decomposition [J]. Energy Storage Science and Technology, 2023, 12(2): 496-503. |
[6] | Meiqian HOU, Qifan NIU, Jie XING, Yinghao SHAN. Optimal configuration of energy storage system in active distribution network with the consideration of reliability [J]. Energy Storage Science and Technology, 2023, 12(2): 504-514. |
[7] | Hao QIN, Lijun QIN, Xuechen BAI, Cong LI. A control strategy of flywheel energy storage system participating frequency regulation with pumped storage [J]. Energy Storage Science and Technology, 2022, 11(12): 3915-3925. |
[8] | Zhicheng LIU, Daogang PENG, Huirong ZHAO, Danhao WANG, Yuchen LIU. Development prospects of energy storage participating in auxiliary services of power systems under the targets of the dual-carbon goal [J]. Energy Storage Science and Technology, 2022, 11(2): 704-716. |
[9] | Bin GUO, Jie XING, Fei YAO, Xiaomin JING. Optimal configuration of user-side hybrid energy storage based on bi-level programming model [J]. Energy Storage Science and Technology, 2022, 11(2): 615-622. |
[10] | Linxuan HE, Wenyan LI. Simulation of the primary frequency modulation process of thermal power units with the auxiliary of flywheel energy storage [J]. Energy Storage Science and Technology, 2021, 10(5): 1679-1686. |
[11] | WenBo YAN, YunHui HUANG, Dong WANG, JinRui TANG, KeLiang ZHOU. Research on stability optimization of grid-forming energy storage converter based on virtual bus voltage control [J]. Energy Storage Science and Technology, 2023, (): 1-10. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||