Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (9): 3287-3298.doi: 10.19799/j.cnki.2095-4239.2024.0226
• Energy Storage System and Engineering • Previous Articles Next Articles
Xin JIANG1,2(), Wanxuan ZHU4, Heping LI1(), Xuehui ZHANG2(), Jian XU3, Wenxin HAN2, Jiangrong XU1
Received:
2024-03-14
Revised:
2024-04-30
Online:
2024-09-28
Published:
2024-09-20
Contact:
Heping LI, Xuehui ZHANG
E-mail:211070109@hdu.edu.cn;peacelee@hdu.edu.cn;zhangxuehui@iet.cn
CLC Number:
Xin JIANG, Wanxuan ZHU, Heping LI, Xuehui ZHANG, Jian XU, Wenxin HAN, Jiangrong XU. Control characteristics of a natural gas residual pressure power generation turbine generator set[J]. Energy Storage Science and Technology, 2024, 13(9): 3287-3298.
1 | 呼晓昌. 海上油气田透平发电机余热回收技术应用[J]. 石油石化节能, 2014, 4(11): 14-16. DOI: 10.3969/j.issn.2095-1493.2014.011.006. |
HU X C. Application of waste heat recovery technology of turbine generator in offshore oil and gas fields[J]. Energy Conservation in Petroleum & Petrochemical Industry, 2014, 4(11): 14-16. DOI: 10.3969/j.issn.2095-1493.2014.011.006. | |
2 | MATSUI N, KUROKAWA F, SHIRAISHI K. Accurate model for power turbine generators as recovery energy[C]//The 11th International Conference on Electrical Machinery and Systems,2008. |
3 | 庄森垚. 船舶废气透平发电机组建模研究[D]. 大连: 大连海事大学, 2020. DOI: 10.26989/d.cnki.gdlhu.2020.000403. |
ZHUANG S Y. Study on modeling of marine exhaust gas turbine generator set[D]. Dalian: Dalian Maritime University, 2020. DOI: 10.26989/d.cnki.gdlhu.2020.000403. | |
4 | KRUK-GOTZMAN S, ZIÓŁKOWSKI P, ILIEV I, et al. Techno-economic evaluation of combined cycle gas turbine and a diabatic compressed air energy storage integration concept[J]. Energy, 2023, 266: 126345. DOI: 10.1016/j.energy.2022.126345. |
5 | 陆涵. 燃气管道压力能用于发电—制冰系统的优化[D]. 广州: 华南理工大学, 2013. |
LU H. Optimization of power generation-ice making system using gas pipeline pressure energy[D]. Guangzhou: South China University of Technology, 2013. | |
6 | 吕达. 天然气管网压力能用于热电系统的技术开发与工程化设计[D]. 广州: 华南理工大学, 2013. |
LÜ D. The pressure energy of natural gas pipeline network can be used in technical development and engineering design of thermoelectric system[D]. Guangzhou: South China University of Technology, 2013. | |
7 | 孙洁. 城市门站压力能回收设备研究应用进展[J]. 煤气与热力, 2010, 30(7): 18-20. DOI: 10.3969/j.issn.1000-4416.2010.07.006. |
SUN J. Research and application progress of facilities recovering pressure energy in city gate station[J]. Gas & Heat, 2010, 30(7): 18-20. DOI: 10.3969/j.issn.1000-4416.2010.07.006. | |
8 | FARZANEH-GORD M, HASHEMI S, SADI M. Energy destruction in Iran's natural gas pipe line network[J]. Energy Exploration & Exploitation, 2007, 25(6): 393-406. DOI: 10.1260/014459807783791809. |
9 | 刘析, 林楠. 天然气余压发电的技术应用与发展[J]. 化工管理, 2023(27): 73-75, 112. DOI: 10.19900/j.cnki.ISSN1008-4800.2023.27.019. |
LIU X, LIN N. Technical application and development of natural gas residual pressure power generation[J]. Chemical Engineering Management, 2023(27): 73-75, 112. DOI: 10.19900/j.cnki.ISSN1008-4800.2023.27.019. | |
10 | 张辉. 天然气管网压力能集成利用工艺研究[D]. 广州: 华南理工大学, 2014. |
ZHANG H. Study on integrated utilization technology of pressure energy in natural gas pipeline network[D]. Guangzhou: South China University of Technology, 2014. | |
11 | 安成名. 燃气管道压力能用于发电—制冰技术开发与应用研究[D]. 广州: 华南理工大学, 2013. |
AN C M. Development and application of gas pipeline pressure energy for power generation-ice making technology[D]. Guangzhou: South China University of Technology, 2013. | |
12 | 阎晓如. DMS-2013轮机模拟器中船舶高压电站建模与仿真实现[D]. 大连: 大连海事大学, 2014. |
YAN X R. Modeling and simulation of ship high voltage power station in DMS-2013 marine engine simulator[D]. Dalian: Dalian Maritime University, 2014. | |
13 | 杨菲, 杨德伟. 阀门定位器气动传动系统建模与MATLAB仿真分析[J]. 机械制造, 2016, 54(1): 22-25. DOI: 10.3969/j.issn.1000-4998.2016.01.008. |
YANG F, YANG D W. Modeling and MATLAB simulation analysis of pneumatic transmission system of valve positioner[J]. Machinery, 2016, 54(1): 22-25. DOI: 10.3969/j.issn.1000-4998. 2016.01.008. | |
14 | 张建新. 小型透平燃料伺服系统仿真技术研究[D]. 天津: 天津大学, 2007. |
ZHANG J X. Research on simulation technology of small turbine fuel servo system[D]. Tianjin: Tianjin University, 2007. | |
15 | HANSEN J F, ADNANES A K, FOSSEN T I. Mathematical modelling of diesel-electric propulsion systems for marine vessels[J]. Mathematical and Computer Modelling of Dynamical Systems, 2001, 7(3): 323-355. DOI: 10.1076/mcmd.7.3.323.3641. |
16 | 王述彦, 师宇, 冯忠绪. 基于模糊PID控制器的控制方法研究[J]. 机械科学与技术, 2011, 30(1): 166-172. DOI: 10.13433/j.cnki.1003-8728.2011.01.035. |
WANG S Y, SHI Y, FENG Z X. A method for controlling a loading system based on a fuzzy PID controller[J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(1): 166-172. DOI: 10.13433/j.cnki.1003-8728.2011.01.035. | |
17 | 张文君, 盛维涛, 袁宇鹏, 等. 智能轮式机器人离散模糊自适应PID控制研究[J]. 制造业自动化, 2015, 37(8): 5-8. DOI: 10.3969/j.issn.1009-0134.2015.08.002. |
ZHANG W J, SHENG W T, YUAN Y P, et al. A research on the discrete fuzzy adaptive PID controller of the intelligent wheeled robot[J]. Manufacturing Automation, 2015, 37(8): 5-8. DOI: 10.3969/j.issn.1009-0134.2015.08.002. | |
18 | 付佳杰. 船舶同步发电机参数自适应数字式励磁调节器研究与设计[D]. 大连: 大连海事大学, 2012. |
FU J J. Research and design of parameter adaptive digital excitation regulator for marine synchronous generator[D]. Dalian: Dalian Maritime University, 2012. | |
19 | GANİ A, KEÇECİOĞLU Ö F, AÇIKGÖZ H, et al. Simulation study on power factor correction controlling excitation current of synchronous motor with fuzzy logic controller[J]. International Journal of Intelligent Systems and Applications in Engineering, 2016, 4(Special Issue-1): 229-233. DOI: 10.18201/ijisae.2016specialissue-146979. |
20 | DETTORI S, IANNINO V, COLLA V, et al. An adaptive Fuzzy logic-based approach to PID control of steam turbines in solar applications[J]. Applied Energy, 2018, 227: 655-664. DOI: 10.1016/j.apenergy.2017.08.145. |
21 | STUROV E, RAYUDU R, BADCOCK R A, et al. Rapid synchronization procedure for a synchronous generator employing ballistic trajectory control[C]//2016 IEEE Innovative Smart Grid Technologies-Asia (ISGT-Asia). November 28-December 1, 2016, Melbourne, VIC, Australia. IEEE, 2016: 517-522. DOI: 10.1109/ISGT-Asia.2016.7796438. |
[1] | Dameng LIU, Xuepeng MOU, Bohao SHI, Julong CHEN, Bin WANG, Chen LUO, Chengjun ZHONG, Sizhe CHEN. Multi-software collaborative modeling method for mechanical and electrical co-simulation of slope gravity energy storage systems [J]. Energy Storage Science and Technology, 2024, 13(9): 3266-3276. |
[2] | Aifang ZHANG, Bangda WEI, Zhuohao LI, Yang YANG, Tianqiang YANG, Jun YAO, Jie ZHANG, Fei LIU, Haomiao LI, Kangli WANG, Kai JIANG. Research progress on modeling and SOC online estimation of vanadium redox-flow batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 1036-1049. |
[3] | Kehuan XIE, Chuanchang LI, Jian CHEN, Longhai YU, zhun TAN, Weihai QIN. Simulation model advances in vanadium redox flow battery energy storage and monitoring method for state of charge [J]. Energy Storage Science and Technology, 2021, 10(6): 2363-2372. |
[4] | JIA Xiang, CUI Ning . TICC-500 energy storage phase of modeling and thermal properties [J]. Energy Storage Science and Technology, 2017, 6(1): 135-140. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||