Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (10): 3480-3490.doi: 10.19799/j.cnki.2095-4239.2024.0244
• Energy Storage System and Engineering • Previous Articles Next Articles
Jie WANG1(), Xiaoyao NING2, Xuehui WANG1(), Jian WANG1
Received:
2024-03-19
Revised:
2024-03-30
Online:
2024-10-28
Published:
2024-10-30
Contact:
Xuehui WANG
E-mail:wj17346863559@mail.ustc.edu.cn;wxuehui@ustc.edu.cn
CLC Number:
Jie WANG, Xiaoyao NING, Xuehui WANG, Jian WANG. Experimental study on the explosion characteristics of lithium-ion electrolyte solvent/air mixture[J]. Energy Storage Science and Technology, 2024, 13(10): 3480-3490.
Table 2
Simulated maximum explosion pressure Pmax,ad fitting coefficient changing with equivalence ratio"
温度/K | R2 | ||||
---|---|---|---|---|---|
300 | -32.76072 | 1693.29955 | -719.52981 | 17.87222 | 0.9993 |
320 | -15.8188 | 1562.99867 | -663.06814 | 17.30455 | 0.9991 |
340 | -1.14051 | 1448.93148 | -614.17417 | 17.11271 | 0.99929 |
360 | 11.66003 | 1348.36016 | -571.55164 | 17.22104 | 0.99944 |
380 | 22.88976 | 1259.11266 | -534.16236 | 17.56372 | 0.99957 |
Table 3
Experimental maximum explosion pressure Pmax,exp fitting coefficient changing with temperature reciprocal 1/T0"
当量比ϕ | k | d | R² |
---|---|---|---|
0.6 | 180.98674 | -1.11477 | 0.94465 |
0.7 | 153.12551 | 141.86729 | 0.97943 |
0.8 | 192.68075 | 76.80443 | 0.99931 |
0.9 | 219.14721 | 46.41482 | 0.95202 |
1 | 276.92451 | -83.45078 | 0.98783 |
1.1 | 250.50593 | 6.25612 | 0.99974 |
1.2 | 258.7523 | -9.57892 | 0.99969 |
1.3 | 254.5799 | 1.09647 | 0.97821 |
1.4 | 300.51253 | -140.66437 | 0.9887 |
Table 4
Maximum adiabatic explosion pressure Pmax,ad fitting coefficient changing with temperature reciprocal 1/T0"
当量比 | k | d | R² |
---|---|---|---|
0.6 | 198.28893 | 68.78829 | 1 |
0.7 | 222.82119 | 61.26782 | 1 |
0.8 | 245.27285 | 50.99897 | 1 |
0.9 | 264.27652 | 40.75989 | 1 |
1 | 278.00888 | 34.91673 | 1 |
1.1 | 283.99354 | 38.90798 | 1 |
1.2 | 281.9118 | 52.50482 | 1 |
1.3 | 276.98075 | 1.09647 | 1 |
1.4 | 272.10566 | 72.00329 | 1 |
1 | 国务院办公厅. 国务院办公厅关于印发新能源汽车产业发展规划(2021—2035年)的通知 [EB/OL]. (2020-11-2) [2024-3-15]. https://www.gov.cn/zhengce/zhengceku/2020-11/02/content_5556716.htm. |
2 | EV世纪. 2023年我国新能源汽车销售949.5万辆,市占率达31.6% [EB/OL]. (2024-1-11) [2024-3-15]. https://new.qq.com/rain/a/20240111A0958H00. |
3 | WANG H B, DU Z M, RUI X Y, et al. A comparative analysis on thermal runaway behavior of Li (NixCoyMnz)O2 battery with different nickel contents at cell and module level[J]. Journal of Hazardous Materials, 2020, 393: 122361. DOI: 10.1016/j.jhazmat.2020.122361. |
4 | RAO Z H, WANG S F. A review of power battery thermal energy management[J]. Renewable and Sustainable Energy Reviews, 2011, 15(9): 4554-4571. DOI: 10.1016/j.rser.2011.07.096. |
5 | WANG Q S, MAO B B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131. DOI: 10.1016/j.pecs.2019.03.002. |
6 | FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. DOI: 10.1016/j.ensm.2017.05.013. |
7 | SUN P Y, BISSCHOP R, NIU H C, et al. A review of battery fires in electric vehicles[J]. Fire Technology, 2020, 56(4): 1361-1410. DOI: 10.1007/s10694-019-00944-3. |
8 | 张良, 张得胜, 陈克, 等. 动力电池热失控引发电动汽车火灾的典型特征研究[J]. 中国安全生产科学技术, 2020, 16(7): 94-99. DOI: 10.11731/j.issn.1673-193x.2020.07.015. |
ZHANG L, ZHANG D S, CHEN K, et al. Research on typical characteristics of electric vehicle fire caused by thermal runaway of power battery[J]. Journal of Safety Science and Technology, 2020, 16(7): 94-99. DOI: 10.11731/j.issn.1673-193x.2020.07.015. | |
9 | 夏继豪. 纯电动汽车的火灾特性及热释放速率探讨[J]. 安全与环境学报, 2021, 21(3): 1028-1032. DOI: 10.13637/j.issn.1009-6094.2020.1148. |
XIA J H. Discussion on fire characteristics and heat release rate of blade electric vehi-cles[J]. Journal of Safety and Environment, 2021, 21(3): 1028-1032. DOI: 10.13637/j.issn.1009-6094.2020.1148. | |
10 | MAO B B, CHEN H D, CUI Z X, et al. Failure mechanism of the lithium ion battery during nail penetration[J]. International Journal of Heat and Mass Transfer, 2018, 122: 1103-1115. DOI: 10.1016/j.ijheatmasstransfer.2018.02.036. |
11 | JEEVARAJAN J A. Hazards associated with high voltage high capacity lithium-ion batteries[J]. ECS Transactions, 2011, 33(22): 1-6. DOI: 10.1149/1.3557704. |
12 | RIBIÈRE P, GRUGEON S, MORCRETTE M, et al. Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry[J]. Energy & Environmental Science, 2012, 5(1): 5271-5280. DOI: 10.1039/C1EE02218K. |
13 | AURBACH D, TALYOSEF Y, MARKOVSKY B, et al. Design of electrolyte solutions for Li and Li-ion batteries: A review[J]. Electrochimica Acta, 2004, 50(2/3): 247-254. DOI: 10.1016/j.electacta.2004.01.090. |
14 | HUBBLE D, BROWN D E, ZHAO Y Z, et al. Liquid electrolyte development for low-temperature lithium-ion batteries[J]. Energy & Environmental Science, 2022, 15(2): 550-578. DOI: 10.1039/D1EE01789F. |
15 | ZHANG S S, JOW T R, AMINE K, et al. LiPF6-EC-EMC electrolyte for Li-ion battery[J]. Journal of Power Sources, 2002, 107(1): 18-23. DOI: 10.1016/S0378-7753(01)00968-5. |
16 | 中国化学品安全协会. 电解液配制过程中爆炸致3人死亡,锂电池高速发展安全风险凸显 [EB/OL]. (2023-08-22) [2024-03-25]. https://zhuanlan.zhihu.com/p/651542493. |
17 | 北京市应急管理局. 丰台区"4⋅16"较大火灾事故调查报告 [EB/OL]. (2021-11-22) [2024-03-25]. http://yjglj.beijing.gov.cn/art/2021/11/22/art_7466_470.html. |
18 | KUMAI K, MIYASHIRO H, KOBAYASHI Y, et al. Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell[J]. Journal of Power Sources, 1999, 81: 715-719. DOI: 10.1016/S0378-7753(98)00234-1. |
19 | CHEN M Y, XIAO R, ZHAO L Y, et al. Experimental study on the combustion characteristics of carbonate solvents under different thermal radiation by cone calorimeter[J]. Applied Thermal Engineering, 2022, 211: 118428. DOI: 10.1016/j.applthermaleng. 2022.118428. |
20 | ESHETU G G, GRUGEON S, LARUELLE S, et al. In-depth safety-focused analysis of solvents used in electrolytes for large scale lithium ion batteries[J]. Physical Chemistry Chemical Physics, 2013, 15(23): 9145-9155. DOI: 10.1039/c3cp51315g. |
21 | TAKAHASHI S, KANAYAMA K, MORIKURA S, et al. Study on oxidation and pyrolysis of carbonate esters using a micro flow reactor with a controlled temperature profile. Part II: Chemical kinetic modeling of ethyl methyl carbonate[J]. Combustion and Flame, 2022, 238: 111878. DOI: 10.1016/j.combustflame. 2021.111878. |
22 | GRÉGOIRE C M, COOPER S P, KHAN-GHAURI M, et al. Pyrolysis study of dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate using shock-tube spectroscopic CO measurements and chemical kinetics investigation[J]. Combustion and Flame, 2023, 249: 112594. DOI: 10.1016/j.combustflame.2022.112594. |
23 | ZHANG J B, ZHONG A H, HUANG Z, et al. Experimental and kinetic study on the stabilities and gas generation of typical electrolyte solvent components under oxygen-lean oxidation and pyrolysis conditions[J]. Science China Technological Sciences, 2022, 65(12): 2883-2894. DOI: 10.1007/s11431-022-2184-x. |
24 | Determination of the explosion limits and the limiting oxygen concentration(LOC) for flammable gases and vapours: EN 1839-2017 [S]. CEN, 2017: |
25 | Determination of maximum explosion pressure and the maximum rate of pressure rise of gases and vapours: BS EN 15967[S]. 2011: |
26 | NAKAMURA H, CURRAN H J, POLO CÓRDOBA A, et al. An experimental and modeling study of diethyl carbonate oxidation[J]. Combustion and Flame, 2015, 162(4): 1395-1405. DOI: 10.1016/j.combustflame.2014.11.002. |
27 | ALEXANDRINO K, ALZUETA M U, CURRAN H J. An experimental and modeling study of the ignition of dimethyl carbonate in shock tubes and rapid compression machine[J]. Combustion and Flame, 2018, 188: 212-226. DOI: 10.1016/j.combustflame.2017.10.001. |
28 | AÑEZ R, HERIZE A, SIERRAALTA A, et al. DFT Study of substituent effects of 2-substituted alkyl ethyl methylcarbonates in homogeneous, unimolecular gas phase elimination kinetics[J]. International Journal of Chemical Kinetics, 2006, 38(3): 184-193. DOI: 10.1002/kin.20159. |
29 | CHUCHANI G, MARQUEZ E, HERIZE A, et al. Mechanism and structure-reactivity correlation in the homogeneous, unimolecular elimination kinetics of 2‐substituted ethyl methylcarbonates in the gas phase[J]. Journal of Physical Organic Chemistry, 2003, 16(11): 839-848. |
30 | NOTARIO R, QUIJANO J, SÁNCHEZ C, et al. Theoretical study of the mechanism of thermal decomposition of carbonate esters in the gas phase[J]. Journal of Physical Organic Chemistry, 2005, 18(2): 134-141. DOI: 10.1002/poc.866. |
31 | CROSS J T D, HUNTER R, STIMSON V R. ChemInform Abstract: The thermal decomposition of simple carbonate esters[J]. Chemischer Informationsdienst, 1976, 7(46): DOI: 10.1002/chin.197646124. |
32 | GORDON ALVIN S, NORRIS WILLIAM P. A study of the pyrolysis of methyl ethyl and diethyl carbonates in the gas phase[J]. The Journal of Physical Chemistry, 1965, 69(9): 3013-3017. |
33 | TAYLOR R. The mechanism of thermal eliminations. Part 15. Abnormal rate spread in pyrolysis of alkyl methyl carbonates and S-alkyl O-methyl carbonates due to enhanced nucleophilicity of the carbonyl group[J]. Journal of the Chemical Society, Perkin Transactions 2, 1983(3): 291. DOI: 10.1039/p29830000291. |
34 | 郑康雪. 氨气/甲醇/空气爆炸特性和影响因素研究[D]. 合肥: 中国科学技术大学, 2023. |
ZHENG K X. Study on explosion characteristics and influencing factors of ammonia/methanol/air[D]. Hefei: University of Science and Technology of China, 2023. | |
35 | RAZUS D, BRINZEA V, MITU M, et al. Temperature and pressure influence on maximum rates of pressure rise during explosions of propane–air mixtures in a spherical vessel[J]. Journal of Hazardous Materials, 2011, 190(1/2/3): 891-896. DOI: 10.1016/j.jhazmat.2011.04.018. |
36 | ZABETAKIS M G. Flammability characteristics of combustible gases and vapors[M]. Washington D C: U. S. Dept. of the Interior, Bureau of Mines, 1965. |
37 | COWARD H F, JONES G W. Limits of flammability of gases and vapors[M]. 4th ed. Washington D C: U. S. Dept. of the Interior, Bureau of Mines, 1952. |
38 | ZHANG K, SHANG S, LI X L, et al. Lower flammability limits of NH3/H2 mixtures under different initial temperatures and initial pressures[J]. Fuel, 2023, 331: 125982. DOI: 10.1016/j.fuel.2022.125982. |
[1] | Jie WANG, Chenxi ZHAO, Changzheng LI, Xuehui WANG, Qinpei CHEN, Wenzhong MI, Guo XU, Jian WANG. Thermal runaway and water spray of full-size electric vehicle under the underground garage scene: An experimental study [J]. Energy Storage Science and Technology, 2023, 12(11): 3379-3386. |
[2] | Kangyong YIN, Fengbo TAO, Wei LIANG, Zhiyuan NIU. Simulation of thermal runaway gas explosion in double-layer prefabricated cabin lithium iron phosphate energy storage power station [J]. Energy Storage Science and Technology, 2022, 11(8): 2488-2496. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||