Energy Storage Science and Technology
Jun Ding1,2(), Lijie Shi2, Xiangbin Chen3, Xiang Qu3, Zhe Cheng1, Xiufen Li1(), Man Jiang2(), Zhiquan Chen3, Hongyu Wang1
Received:
2024-06-04
Revised:
2024-06-22
Contact:
Xiufen Li, Man Jiang
E-mail:dcyywl@outlook.com;lixiufen@qhu.edu.cn;jiangm@hust.edu.cn
CLC Number:
Jun Ding, Lijie Shi, Xiangbin Chen, Xiang Qu, Zhe Cheng, Xiufen Li, Man Jiang, Zhiquan Chen, Hongyu Wang. Study of heat treatment temperature on the thermoelectric properties of cold-sintered SnSe[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2024.0501.
1 | ZHENG X F, LIU C X, YAN Y Y, et al. A review of thermoelectrics research – Recent developments and potentials for sustainable and renewable energy applications [J]. Renewable and Sustainable Energy Reviews, 2014, 32: 486-503. |
2 | FITRIANI, OVIK R, LONG B D, et al. A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery [J]. Renewable and Sustainable Energy Reviews, 2016, 64: 635-59. |
3 | SHU G, LIANG Y, WEI H, et al. A review of waste heat recovery on two-stroke IC engine aboard ships [J]. Renewable and Sustainable Energy Reviews, 2013, 19: 385-401. |
4 | 陈海生 李泓, 徐玉杰,等. 2023年中国储能技术研究进展 [J]. 储能科学与技术, 2024, 13(05): 1359-97. |
Chen H S, Li H, Xu Y J, et al. Research progress on energy storage technologies of China in 2023 [J]. Energy Storage Science and Technology, 2024, 13(05): 1359-97 | |
5 | KIM T, LEE H, CHUNG I. SnSe : The rise of the ultrahigh thermoelectric performance material [J]. Bulletin of the Korean Chemical Society, 2024, 45: 186-99. |
6 | ZHOU G, WANG D. High thermoelectric performance from optimization of hole-doped CuInTe2 [J]. Physical Chemistry Chemical Physics, 2016, 18(8): 5925-31. |
7 | CHANG C, WU M, HE D, et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals [J]. Science (American Association for the Advancement of Science), 2018, 360(6390): 778-83. |
8 | DUONG A T, NGUYEN V Q, DUVJIR G, et al. Achieving ZT=2.2 with Bi-doped n-type SnSe single crystals [J]. Nature Communications, 2016, 7(1): 13713. |
9 | WANG S, HUI S, PENG K, et al. Low temperature thermoelectric properties of p-type doped single-crystalline SnSe [J]. Applied Physics Letters, 2018, 112(14): 142102. |
10 | ZHAO L D, LO S H, ZHANG Y, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals [J]. Nature, 2014, 508(7496): 373-7. |
11 | TRITT T M. Holey and Unholey Semiconductors [J]. Science, 1999, 283(5403): 804-5. |
12 | LIU B, HU J, ZHOU J, et al. Thermoelectric Transport in Nanocomposites [J]. Materials, 2017, 10(4): 418. |
13 | TAN G, ZHAO L-D, KANATZIDIS M G. Rationally Designing High-Performance Bulk Thermoelectric Materials [J]. Chemical Reviews, 2016, 116(19): 12123-49. |
14 | YANG X, WANG Z-Y, WANG J, et al. Synthesis of SnSe1–xSx Polycrystals with Enhanced Thermoelectric Properties Via Hydrothermal Methods Combined with Spark Plasma Sintering [J]. ACS Applied Energy Materials, 2022, 5(9): 11662-8. |
15 | LI D, LI J C, QIN X Y, et al. Thermoelectric Performance for SnSe Hot-Pressed at Different Temperature [J]. Journal of Electronic Materials, 2016, 46(1): 79-84. |
16 | ZHANG Q, CHERE E K, SUN J, et al. Studies on Thermoelectric Properties of n-type Polycrystalline SnSe1-xSxby Iodine Doping [J]. Advanced Energy Materials, 2015, 5(12): 1500360. |
17 | GRASSO S, BIESUZ M, ZOLI L, et al. A review of cold sintering processes [J]. Advances in Applied Ceramics, 2020, 119(3): 115-43. |
18 | GUO J, GUO H, BAKER A L, et al. Cold Sintering: A Paradigm Shift for Processing and Integration of Ceramics [J]. Angew Chem Int Ed Engl, 2016, 55(38): 11457-61. |
19 | ZHU B, SU X, SHU S, et al. Cold-Sintered Bi2Te3-Based Materials for Engineering Nanograined Thermoelectrics [J]. ACS Applied Energy Materials, 2022, 5(2): 2002-10. |
20 | LU W, WU S, DING Q, et al. Cold Sintering Mediated Engineering of Polycrystalline SnSe with High Thermoelectric Efficiency [J]. ACS Applied Materials & Interfaces, 2024, 16(4): 4671-8. |
21 | SHI X, YANG J, SALVADOR J R, et al. Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports [J]. J Am Chem Soc, 2011, 133(20): 7837-46. |
22 | ZHAO Z, PAN Z, WEI F, et al. Study on the properties of Ca9Co12O28 under high pressure [J]. Ceramics International, 2021, 47(24): 34388-95. |
23 | MONIKAPANI K, VIJAY V, ABINAYA R, et al. Realizing an enhanced Seebeck coefficient and extremely low thermal conductivity in anharmonic Sb-substituted SnSe nanostructures [J]. Journal of Alloys and Compounds, 2022, 923: 165961. |
24 | TUOMISTO F. Open Volume Defects [M]. Oxide Semiconductors. 2013: 39-65. |
25 | LEIPNER H S, MIKHNOVICH V V, BONDARENKO V, et al. Positron annihilation of defects in silicon deformed at different temperatures [J]. Physica B: Condensed Matter, 2003, 340-342: 617-21. |
26 | CHIEN C-H, CHANG C-C, CHEN C-L, et al. Facile chemical synthesis and enhanced thermoelectric properties of Ag doped SnSe nanocrystals [J]. RSC Advances, 2017, 7(54): 34300-6. |
27 | HE H, LI X, CHEN Z, et al. Interplay between Point Defects and Thermal Conductivity of Chemically Synthesized Bi2Te3 Nanocrystals Studied by Positron Annihilation [J]. The Journal of Physical Chemistry C, 2014, 118: 22389. |
28 | LOU X, LI S, CHEN X, et al. Lattice Strain Leads to High Thermoelectric Performance in Polycrystalline SnSe [J]. ACS nano, 2021, 15(5): 8204-15. |
29 | ZHANG Q K, NING S, QI N, et al. Enhanced thermoelectric performance of a simple method prepared polycrystalline SnSe optimized by spark plasma sintering [J]. Journal of Applied Physics, 2019, 125: 225109. |
30 | LIU H, ZHANG X, LI S, et al. Synthesis and Thermoelectric Properties of SnSe by Mechanical Alloying and Spark Plasma Sintering Method [J]. Journal of Electronic Materials, 2017, 46(5): 2629-33. |
31 | MARTIN J, WANG L, CHEN L, et al. Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites [J]. Physical Review B, 2009, 79(11): 115311. |
32 | SHANG P, DONG J, PEI J, et al. Highly Textured N-Type SnSe Polycrystals with Enhanced Thermoelectric Performance [J]. Research, 2019, 2019: 1-10. |
33 | LIU D, WANG D, HONG T, et al. Lattice plainification advances highly effective SnSe crystalline thermoelectrics [J]. Science (New York, NY), 2023, 380: 841-6. |
34 | PENG K, LU X, ZHAN H, et al. Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals [J]. Energy & Environmental Science, 2016, 9(2): 454-60. |
35 | JIN Y, WANG D, HONG T, et al. Outstanding CdSe with Multiple Functions Leads to High Performance of GeTe Thermoelectrics [J]. Advanced Energy Materials, 2022, 12(10): 2103779. |
36 | WANG J, WU J, WANG T, et al. T-square resistivity without Umklapp scattering in dilute metallic Bi2O2Se [J]. Nature Communications, 2020, 11(1): 3846. |
37 | HE H F, ZHAO B, QI N, et al. Role of vacancy defects on the lattice thermal conductivity in In2O3 thermoelectric nanocrystals: a positron annihilation study [J]. Journal of Materials Science, 2018, 53(18): 12961-73. |
[1] | WU Shijia, XIAO Xiang, WANG Chao, ZHONG Guobin, LI Xin, ZHENG Chao, RUAN Dianbo. Effect of high temperature heat treatment on electrochemical properties of three-dimensional porous graphene [J]. Energy Storage Science and Technology, 2020, 9(1): 65-69. |
[2] | CHENG Xiaomin1,2, XU Kai1, ZHU Chuang1, YU Guoming2, LIU Zhi2. Influence of heat treatment on solidus temperature of LiNO3-NaNO3-KNO3 molten salt [J]. Energy Storage Science and Technology, 2017, 6(5): 1094-1098. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||