Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (1): 269-282.doi: 10.19799/j.cnki.2095-4239.2024.0590
• Energy Storage System and Engineering • Previous Articles Next Articles
Yifan ZHANG1,2,5(), Jie LIU1, Ya'nan LI2, Jiahao HAO2,3, Yunkai YUE2,4,5(
), Junling YANG2,5, Zhentao ZHANG2,4,5
Received:
2024-06-28
Revised:
2024-07-23
Online:
2025-01-28
Published:
2025-02-25
Contact:
Yunkai YUE
E-mail:17685470886@163.com;yueyunkai@mail.ipc.ac.cn
CLC Number:
Yifan ZHANG, Jie LIU, Ya'nan LI, Jiahao HAO, Yunkai YUE, Junling YANG, Zhentao ZHANG. Research progress on surge analysis and anti-surge of turbo-compressor[J]. Energy Storage Science and Technology, 2025, 14(1): 269-282.
Table 1
List of anti-surge control types"
控制类型 | 控制特点 | 优缺点 |
---|---|---|
被动控制 | 通过限制压缩机入口最小流量,确保压缩机工作点运行在喘振线右侧安全区以防止喘振发生 | 设计和实现简单,可靠性高,响应时间短,成本低但控制精度低,反应滞后,缩小了压缩机运行范围,降低了压缩机效率 |
主动控制 | 通过改变压缩机自身性能,进而从压缩机内部对喘振现象进行抑制 | 控制能力精确,适应性强,能够集成先进技术和多变量控制,可以使压缩机的工作点越过原有喘振线,扩大了压缩机的运行范围,性能优化显著,但系统复杂性高,成本较高,维护要求高,实时性和计算要求高 |
主/被动控制 | 正常工况下采用主动控制进行防喘振控制,被动控制仅用于特殊或紧急情况 | 结合了主动控制与被动控制的优点,但只是割裂地使用二者,并没有实现二者真正的结合 |
1 | 张玮灵, 古含, 章超, 等. 压缩空气储能技术经济特点及发展趋势[J]. 储能科学与技术, 2023, 12(4): 1295-1301. DOI: 10.19799/j.cnki.2095-4239.2022.0645. |
ZHANG W L, GU H, ZHANG C, et al. Technical economic characteristics and development trends of compressed air energy storage[J]. Energy Storage Science and Technology, 2023, 12(4): 1295-1301. DOI: 10.19799/j.cnki.2095-4239.2022.0645. | |
2 | 郝佳豪, 越云凯, 张家俊, 等. 二氧化碳储能技术研究现状与发展前景[J]. 储能科学与技术, 2022, 11(10): 3285-3296. DOI: 10.19799/j.cnki.2095-4239.2022.0199. |
HAO J H, YUE Y K, ZHANG J J, et al. Research status and development prospect of carbon dioxide energy-storage technology[J]. Energy Storage Science and Technology, 2022, 11(10): 3285-3296. DOI: 10.19799/j.cnki.2095-4239.2022.0199. | |
3 | 刘石, 黄正, 胡亚轩, 等. 空压机喘振现象及防喘技术浅析[J]. 储能科学与技术, 2020, 9(S1): 70-77. |
LIU S, HUANG Z, HU Y X, et al. Brief analysis of air compressor surge phenomenon and anti-surge technology [J]. Energy Storage Science and Technology, 2020, 9(S1): 70-77 | |
4 | 祁大同. 离心式压缩机原理[M]. 北京: 机械工业出版社, 2018. |
QI D T. Principle of centrifugal compressor[M]. Beijing: China Machine Press, 2018. | |
5 | ALMASI A. Latest techniques and practical notes on anti-surge systems for centrifugal compressors[J]. Australian Journal of Mechanical Engineering, 2012, 10(1): 81-90. DOI: 10.7158/m11-779.2012.10.1. |
6 | GRAVDAHL J. Modeling and control of surge and rotating stall in compressors[J/OL].1998.[2021-05-03].https://api.semanticscholar.org/CorpusID:59731157 |
7 | 陈征. 离心式空气压缩机组防喘振控制系统的设计[D]. 沈阳: 东北大学, 2016. |
CHEN Z. Design of anti-surge control system for centrifugal air compressor units[D]. Shenyang: Northeastern University, 2016. | |
8 | XUE X, WANG T, ZHANG T T, et al. Mechanism of stall and surge in a centrifugal compressor with a variable vaned diffuser[J]. Chinese Journal of Aeronautics, 2018, 31(6): 1222-1231. DOI: 10.1016/j.cja.2018.04.003. |
9 | LAWLESS P B, FLEETER S. Active control of centrifugal compressor rotating stall[M]//ATASSI H M, ed. Unsteady Aerodynamics, Aeroacoustics, and Aeroelasticity of Turbomachines and Propellers. New York, NY: Springer New York, 1993: 397-414. DOI: 10.1007/978-1-4613-9341-2_20. |
10 | 徐黎明. 离心式压缩机喘振原因分析及防范措施[J]. 石化技术, 2014, 21(1): 40-43. DOI: 10.3969/j.issn.1006-0235.2014.01.011. |
XU L M. Analysis and solution for surge in centrifugal compressor[J]. Petrochemical Industry Technology, 2014, 21(1): 40-43. DOI: 10.3969/j.issn.1006-0235.2014.01.011. | |
11 | AMIN A A, MAQSOOD M T, MAHMOOD-UL-HASAN K. Surge protection of centrifugal compressors using advanced anti-surge control system[J]. Measurement and Control, 2021, 54(5/6): 967-982. DOI: 10.1177/0020294020983372. |
12 | 朱智富, 马超, 马朝臣, 等. 小流量下离心压气机流场分析及喘振机理研究[J]. 车用发动机, 2011(2): 37-41. DOI: 10.3969/j.issn.1001-2222.2011.02.009. |
ZHU Z F, MA C, MA C C, et al. Flow field analysis and surge mechanism discussion of centrifugal compressor in low flow[J]. Vehicle Engine, 2011(2): 37-41. DOI: 10.3969/j.issn.1001-2222.2011.02.009. | |
13 | 马超, 朱智富, 马朝臣, 等. 涡轮增压器离心压气机非稳态工况流场分析[J]. 应用力学学报, 2011, 28(1): 64-68, 111. |
MA C, ZHU Z F, MA C C, et al. Unsteady flow of the turbocharger centrifugal compressor[J]. Chinese Journal of Applied Mechanics, 2011, 28(1): 64-68, 111. | |
14 | 郑克扬, 葛国璜. 发动机喘振-爆燃故障的信号分析[J]. 航空动力学报, 1990, 5(3): 204-208, 283-284. DOI: 10.13224/j.cnki.jasp.1990.03.003. |
ZHENG K Y, GE G H. Signal analysis technique for surge-detonation of a turbojet engine[J]. Journal of Aerospace Power, 1990, 5(3): 204-208, 283-284. DOI: 10.13224/j.cnki.jasp. 1990.03.003. | |
15 | 郭强, 竺晓程, 杜朝辉, 等. 带气腔的离心压缩机旋转失速的三维数值模拟[J]. 航空动力学报, 2007, 22(7): 1167-1172. DOI: 10.13224/j.cnki.jasp.2007.07.024. |
GUO Q, ZHU X C, DU Z H, et al. Three-dimensional numerical simulation of rotating stall inside a centrifugal compressor with plenum model[J]. Journal of Aerospace Power, 2007, 22(7): 1167-1172. DOI: 10.13224/j.cnki.jasp.2007.07.024. | |
16 | 胡江峰, 欧阳华, 何磊, 等. 多级轴流压气机喘振特性分析[J]. 汽轮机技术, 2010, 52(4): 250-252. DOI: 10.3969/j.issn.1001-5884.2010.04.004. |
HU J F, OUYANG H, HE L, et al. Performance analysis of multistage axial compressor at surge conditions[J]. Turbine Technology, 2010, 52(4): 250-252. DOI: 10.3969/j.issn.1001-5884.2010.04.004. | |
17 | GREITZER E M. Surge and rotating stall in axial flow compressors: Part I: Theoretical compression system model[J]. Journal of Engineering for Power, 1976, 98(2): 190-198. DOI: 10.1115/1.3446138. |
18 | DAY TOWLER M, ALLISON T, KRUEGER P, et al. A novel approach to surge control: High-frequency pressure variance As an indicator of impending surge in centrifugal compressors[C]//ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, June 11–15, 2018, Oslo, Norway. 2018 DOI: 10.1115/GT2018-77222. |
19 | YOON J W, WILAILAK S, BAE J E, et al. Surge analysis in a centrifugal compressor using a dimensionless surge number[J]. Chemical Engineering Research and Design, 2020, 164: 240-247. DOI: 10.1016/j.cherd.2020.10.004. |
20 | 孙立臣, 席光, 武耀族. 高速离心式压气机喘振特性的实验与数值模拟研究[J]. 工程热物理学报, 2023, 44(6): 1519-1527. |
SUN L C, XI G, WU Y Z. Experimental and numerical simulation study on surge characteristics of high speed centrifugal compressor[J]. Journal of Engineering Thermophysics, 2023, 44(6): 1519-1527. | |
21 | 赵阳, 王志恒, 席光. 离心压缩机喘振动态特性的数值研究[J]. 工程热物理学报, 2019, 40(10): 2252-2258. |
ZHAO Y, WANG Z H, XI G. Numerical investigation of dynamic characteristic of surge in a centrifugal compressor[J]. Journal of Engineering Thermophysics, 2019, 40(10): 2252-2258. | |
22 | DEHNER R, SELAMET A, KELLER P, et al. Simulation of deep surge in a turbocharger compression system[J]. Journal of Turbomachinery, 2016, 138(11): 111002. DOI: 10.1115/1.4033260. |
23 | CREVEL F, GOURDAIN N, OTTAVY X. Numerical simulation of aerodynamic instabilities in a multistage high-speed high-pressure compressor on its test rig: Part II: Deep surge[J]. Journal of Turbomachinery, 2014, 136(10): 101004. DOI: 10.1115/1.4027968. |
24 | GRAPOW F, LIŚKIEWICZ G. Study of the greitzer model for centrifugal compressors: Variable lc parameter and two types of surge[J]. Energies, 2020, 13(22): 6072. DOI: 10.3390/en13226072. |
25 | EMMONS H W, PEARSON C E, GRANT H P. Compressor surge and stall propagation[J]. Journal of Fluids Engineering, 1955, 77(4): 455-467. DOI: 10.1115/1.4014389. |
26 | LANCHESTER F W. Aerodonetics: Constituting the Second Volume of a Complete Work on Aerial Flight[M]. Constable & Company Limited, 1910. |
27 | CHEN H Z, JIANG L. A new Anti-surge study based on Fuzzy self-adaptation PID controller[C]//2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery. August 10-12, 2010, Yantai, China. IEEE, 2010: 1147-1151. DOI: 10.1109/FSKD.2010.5569157. |
28 | 葛昕炜, 褚瑞华, 傅江东, 等. 离心式压缩机防喘振控制方法[J]. 流程工业, 2023(3): 40-43. |
GE X W, CHU R H, FU J D, et al. Anti-surge control method for centrifugal compressor[J]. Process, 2023(3): 40-43. | |
29 | 孙士赫. 压缩机组的防喘振控制[J]. 天津化工, 2023, 37(S1): 225-228. |
SUN S H. Anti-surge control of compressor unit[J]. Tianjin Chemical Industry, 2023, 37(S1): 225-228. | |
30 | 王春, 杨武华, 伍元刚, 等. 基于Logix5000的膨胀压缩机防喘振控制浅析[J]. 石化技术, 2024, 31(3): 66-68. |
WANG C, YANG W H, WU Y G, et al. Analysis of anti surge control for expansion compressor based on Logix5000[J]. Petrochemical Industry Technology, 2024, 31(3): 66-68. | |
31 | 单光胜, 任正云, 叶大山. 离心式压缩机防喘振控制算法设计[J]. 自动化技术与应用, 2023, 42(10): 15-19. DOI: 10.20033/j.1003-7241.(2023)10-0015-05. |
SHAN G S, REN Z Y, YE D S. Design of anti-surge control algorithm for centrifugal compressor[J]. Techniques of Automation and Applications, 2023, 42(10): 15-19. DOI: 10.20033/j.1003-7241.(2023)10-0015-05. | |
32 | YI Y N, SUN M G. Research and simulation of fuzzy expert anti-surge control system for compressor[J]. Frontiers in Computing and Intelligent Systems, 2024, 7(1): 1-5. DOI: 10.54097/d39w6055. |
33 | KARASAKAL O, ENGİN YEŞİ L, MÜJDE GÜ Z E L K A Y A, et al. Implementation of a new self-tuning fuzzy PID controller on PLC[J]. TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES, 2005, 13(2): 277-286. |
34 | HE H M, SUN X H. Application of anti surge technology of compressor based on fuzzy control[C]//2020 3rd International Conference on Electron Device and Mechanical Engineering (ICEDME). May 1-3, 2020, Suzhou, China. IEEE, 2020: 330-333. DOI: 10.1109/ICEDME50972.2020.00082. |
35 | WANG C X, SHAO C, HAN Y. Centrifugal compressor surge control using nonlinear model predictive control based on LS-SVM[C]//2010 3rd International Symposium on Systems and Control in Aeronautics and Astronautics. June 8-10, 2010, Harbin, China. IEEE, 2010: 466-471. DOI: 10.1109/ISSCAA. 2010.5633206. |
36 | HE S, XIE M Y, TONTIWACHWUTHIKUL P, et al. Self-adapting anti-surge intelligence control and numerical simulation of centrifugal compressors based on RBF neural network[J]. Energy Reports, 2022, 8: 2434-2447. DOI: 10.1016/j.egyr.2022.01.135. |
37 | DIVYA M N, K N C, GANGADHARIAH S L, et al. Design and performance analysis of anti-surge control mechanism for compressor system using neural networks[J]. International Journal of Advanced Computer Science and Applications, 2022, 13(1). DOI: 10.14569/ijacsa.2022.0130182. |
38 | JIANG K, XIANG Y, CHEN T Y, et al. Research on surge control of centrifugal compressor based on reinforcement learning[M]//BALL A, GELMAN L, RAO B K N, eds. Smart Innovation, Systems and Technologies. Cham: Springer International Publishing, 2020: 293-305. DOI: 10.1007/978-3-030-57745-2_25. |
39 | SALOMA K Z A S. Anti-surge control in centrifugal compressors using reinforcement learning[J/OL]. Biblioteche e Archivi, 2022[2024-05-03]. https://hdl.handle.net/10589/188922 |
40 | MOLANA N, KHODAPARAST P, FATEHI A, et al. Analysis and simulation of active surge control in centrifugal compressor based on multiple model controllers[J]. International Journal of Dynamics and Control, 2021, 9(2): 766-787. DOI: 10.1007/s40435-020-00681-4. |
41 | ARIBI Y, BOUSHAKI R Z. A novel approach for active surge control in multistage centrifugal compressor[J]. Wseas Transactions on Power Systems, 2023, 18: 1-10. DOI: 10.37394/232016.2023.18.1. |
42 | SHENG H L, CHEN Q, LI J C, et al. Robust adaptive backstepping active control of compressor surge based on wavelet neural network[J]. Aerospace Science and Technology, 2020, 106: 106139. DOI: 10.1016/j.ast.2020.106139. |
43 | 王小艳, 赵虹, 罗雄麟. 叶轮压缩系统喘振的主动控制[J]. 动力工程, 2006, 26(6): 808-813. DOI: 10.3321/j.issn: 1000-6761. 2006.06.010. |
WANG X Y, ZHAO H, LUO X L. Active surging control of turbo-compressor systems[J]. Journal of Power Engineering, 2006, 26(6): 808-813. DOI: 10.3321/j.issn: 1000-6761.2006.06.010. | |
44 | GUAN X D, ZHOU J, JIN C W, et al. Influence of different operating conditions on centrifugal compressor surge control with active magnetic bearings[J]. Engineering Applications of Computational Fluid Mechanics, 2019, 13(1): 824-832. DOI: 10.1080/19942060.2019.1639216. |
45 | MA W Y, FU Y Y, LI H B, et al. Surge disturbance suppression of active magnetic bearing suspended compressors based on disturbance observer[C]//2023 26th International Conference on Electrical Machines and Systems (ICEMS). November 5-8, 2023, Zhuhai, China. IEEE, 2023: 2475-2479. DOI: 10.1109/ICEMS59686.2023.10344428. |
46 | HAN X, LIU G, CHEN B D, et al. Surge disturbance suppression of AMB-rotor systems in magnetically suspension centrifugal compressors[J]. IEEE Transactions on Control Systems Technology, 2022, 30(4): 1550-1560. DOI: 10.1109/TCST. 2021. 3112765. |
47 | SMEULERS J P M, BOUMAN W J, ESSENssen H A V. Model predictive control of compressor installations[J/OL]. 1999. [2021-05-03].https://www.tno.nl/media/1545/model-predictive-control-of-compressor.pdf |
48 | JOHANSEN T A. On multi-parametric nonlinear programming and explicit nonlinear model predictive control[C]//Proceedings of the 41st IEEE Conference on Decision and Control. December 10-13, 2002, Las Vegas, NV, USA. IEEE, 2002: 2768-2773. DOI: 10.1109/CDC.2002.1184260. |
49 | GRANCHAROVA A, JOHANSEN T A, TØNDEL P. Computational aspects of approximate explicit nonlinear model predictive control[M]//FINDEISEN R, ALLGÖWER F, BIEGLER L T, eds. Lecture Notes in Control and Information Sciences. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007: 181-192. DOI: 10.1007/978-3-540-72699-9_14. |
50 | CORTINOVIS A, PARESCHI D, MERCANGOEZ M, et al. Model predictive anti-surge control of centrifugal compressors with variable-speed drives[J]. IFAC Proceedings Volumes, 2012, 45(8): 251-256. DOI: 10.3182/20120531-2-NO-4020.00052. |
51 | SHENG H L, CHEN Q, ZHANG J, et al. A high-safety active/passive hybrid control approach for compressor surge based on nonlinear model predictive control[J]. Chinese Journal of Aeronautics, 2023, 36(1): 396-412. DOI: 10.1016/j.cja. 2022.08.021. |
52 | ASADZADEH M A, SHABANI F. Centrifugal compressor active surge controller design based on fuzzy type II[C]//2018 IEEE Texas Power and Energy Conference (TPEC). February 8-9, 2018, College Station, TX, USA. IEEE, 2018: 1-6. DOI: 10.1109/TPEC.2018.8312079. |
53 | ZHANG M J, WU W X, ZHOU C. Numerical model of predicting surge boundaries in high-speed centrifugal compressors[J]. Aerospace Science and Technology, 2023, 141: 108518. DOI: 10.1016/j.ast.2023.108518. |
54 | 姜莉莉, 张晶. 压缩机喘振检测技术专利发展综述[J]. 制冷与空调, 2018, 18(7): 74-79. DOI: 10.3969/j.issn.1009-8402.2018.07.018. |
JIANG L L, ZHANG J. Analysis of patents of compressor surge detectial technology[J]. Refrigeration and Air-Conditioning, 2018, 18(7): 74-79. DOI: 10.3969/j.issn.1009-8402.2018.07.018. | |
55 | LOGAN A, CAVA D G, LIŚKIEWICZ G. Singular spectrum analysis as a tool for early detection of centrifugal compressor flow instability[J]. Measurement, 2021, 173: 108536. DOI: 10.1016/j.measurement.2020.108536. |
56 | KOZHUKHOV Y V, LEBEDEV A A, CHAI N M, et al. Automatic centrifugal compressor pre-surge detection[C]//AIP Conference Proceedings", "INTERNATIONAL CONFERENCE ON SCIENCE AND APPLIED SCIENCE (ICSAS2020). Surakarta, Indonesia. AIP Publishing, 2020: 030047. DOI: 10.1063/5.0026931. |
57 | LIU Y, LI Y C, HE H, et al. Multifractal analysis of flow instability of centrifugal compressor with dynamic pressure[J]. Alexandria Engineering Journal, 2023, 72: 181-193. DOI: 10.1016/j.aej. 2023.03.069. |
58 | ZANOLI S M, ASTOLFI G, MARCZYK J. Complexity-based methodology for Fault Diagnosis: Application on a centrifugal machine[J]. IFAC Proceedings Volumes, 2012, 45(12): 51-56. DOI: 10.3182/20120620-3-MX-3012.00060. |
59 | ZHONG L L, LIU Y, ZHAO J, et al. Deep predictive controller designed for centrifugal compressor system anti-surge[C]//2020 Chinese Automation Congress (CAC). November 6-8, 2020, Shanghai, China. IEEE, 2020: 6554-6559. DOI: 10.1109/CAC51589.2020.9327381. |
60 | 徐野, 黄文君, 米俊芃, 等. 多源信息融合的离心式压缩机喘振诊断方法[J]. 化工学报, 2023, 47(7): 2979-2987. DOI: 10.11949/0438-1157.20230454. |
XU Y, HUANG W J, MI J P, et al. Surge diagnosis method of centrifugal compressor based on multi-source data fusion[J]. CIESC Journal, 2023, 47(7): 2979-2987. DOI: 10.11949/0438-1157.20230454. | |
61 | HOU Y C, WANG Y X, PAN Y R, et al. Vibration-based incipient surge detection and diagnosis of the centrifugal compressor using adaptive feature fusion and sparse ensemble learning approach[J]. Advanced Engineering Informatics, 2023, 56: 101947. DOI: 10.1016/j.aei.2023.101947. |
62 | LISKIEWICZ G, JAESCHKE A, KRYŁŁOWICZ W. Acoustic signature of flow instabilities present in industrial centrifugal compressor[C]//ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition, June 13-17, 2022, Rotterdam, Netherlands. 2022, DOI: 10.1115/GT2022-83018. |
63 | LEONI L, DE CARLO F, ABAEI M M, et al. Failure diagnosis of a compressor subjected to surge events: A data-driven framework[J]. Reliability Engineering & System Safety, 2023, 233: 109107. DOI: 10.1016/j.ress.2023.109107. |
[1] | Yuguang LI, Xiang LIU, Yanzhao LIANG, Shuangzhen LIU. Research on the application of flywheel energy storage device in rail transit [J]. Energy Storage Science and Technology, 2024, 13(8): 2679-2686. |
[2] | Rui ZHOU, Jianfeng HONG, Junci CAO, Wei QIN, Zhuoyue ZHAO. Research on power generation efficiency and stabilization strategies for vertical gravity energy storage [J]. Energy Storage Science and Technology, 2024, 13(10): 3556-3565. |
[3] | Wenzhe DONG, Sile YANG, Zongyou LIANG, Yinyu CHEN. Research on optimal operation of traction power supply system with integrated hybrid energy storage and RPC [J]. Energy Storage Science and Technology, 2023, 12(4): 1185-1193. |
[4] | Shufeng DONG, Lingchong LIU, Kunjie TANG, Haiqi ZHAO, Chengsi XU, Liheng LIN. The teaching method of energy storage control experiment based on Simulink and low-code controller [J]. Energy Storage Science and Technology, 2022, 11(7): 2386-2397. |
[5] | Xiaojie YANG, Haiyun WANG, Zhongchuan JIANG, Zhanghua SONG. Bidirectional power flow strategy design of BLDC motor for flywheel energy storage [J]. Energy Storage Science and Technology, 2022, 11(7): 2233-2240. |
[6] | Yulong CHEN, Xin WU, Wei TENG, Yibing LIU. Power coordinated control strategy of flywheel energy storage array for wind power smoothing [J]. Energy Storage Science and Technology, 2022, 11(2): 600-608. |
[7] | Yanping WEI, Jun WANG, Nanfan LI, Changli SHI. Grid-connected switch control strategy suitable for energy storage converter in microgrid [J]. Energy Storage Science and Technology, 2022, 11(1): 156-163. |
[8] | Shi LIU, Zheng HUANG, Yaxuan HU, Yi YANG, Qingshui GAO, Chu ZHANG, Hongjie WENG, Ranran AN, Debo LI, Shenglei DU, Zhigang LIU. Brief analysis on surge phenomenon and anti-surge technology of air compressor [J]. Energy Storage Science and Technology, 2020, 9(S1): 70-77. |
[9] | Wencan LI, Jingliang LV, Xinjian JIANG, Xinzhen ZHANG. Control method for fault ride-through of flywheel energy storage system based on multi-mode coordination [J]. Energy Storage Science and Technology, 2020, 9(6): 1905-1916. |
[10] | Zhengyi ZHAO, Baoqing YU, Deqing KONG, Haiying REN. Research on capacity configuration and control strategy of the super capacitor energy storage device for rail transit [J]. Energy Storage Science and Technology, 2020, 9(5): 1558-1561. |
[11] | LI Xiaoen, LU Ting, ZHAO Lulu, ZHOU You. Modeling and control strategy for energy storage system of micro-grid based on value stream analysis method [J]. Energy Storage Science and Technology, 2020, 9(3): 735-742. |
[12] | JIN Ruijiu, ZHANG Xiangfeng, WANG Zhijie. Adaptive control strategy for energy storage battery output with inconsistent performance [J]. Energy Storage Science and Technology, 2019, 8(6): 1253-1259. |
[13] | GUO Xin, ZHAO Yefei, ZHENG Junsheng, QIN Nan, DAI Ningning. Design of 48 V automobile start-stop power system based on lithium ion capacitor [J]. Energy Storage Science and Technology, 2019, 8(6): 1159-1164. |
[14] | YANG Fengping, ZHENG Wenqi, JIN Lin, XIE Mengsha, LIU Feng. Integrated control strategy of vehicle supercapacitor energy storage system based on MMC [J]. Energy Storage Science and Technology, 2019, 8(6): 1151-1158. |
[15] | SHI Changli, WEI Tongzheng, HUO Qunhai, HE Junqiang, ZHANG Tongshuo. A control strategy for the distributed energy storage system for a DC distribution power network [J]. Energy Storage Science and Technology, 2019, 8(4): 654-658. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||