1 |
ZHAO H R, WU Q W, HU S J, et al. Review of energy storage system for wind power integration support[J]. Applied Energy, 2015, 137: 545-553. DOI: 10.1016/j.apenergy.2014.04.103.
|
2 |
何玉灵, 焦凌钰, 孙凯, 等. 基于变权重组合的短期风光发电功率混合预测[J/OL]. 华北电力大学学报(自然科学版), 1-12 [2024-05-31]. http://kns.cnki.net/kcms/detail/13.1212.TM.20230914.1657.002.html.
|
|
HE Y L, JIAO L Y, SUN K, et al. Short-term wind and photovoltaic power hybrid prediction based on variable weight combination prediction model[J/OL]. Journal of North China Electric Power University, 1-12 [2024-05-31]. http://kns.cnki.net/kcms/detail/13.1212.TM.20230914.1657.002.html.
|
3 |
WANG C H, ZHAO Q G, TIAN R. Short-term wind power prediction based on a hybrid Markov-based PSO-BP neural network[J]. Energies, 2023, 16(11): 4282. DOI: 10.3390/en16114282.
|
4 |
ZHANG Y H, LI P, LI H X, et al. Short-term power prediction of wind power generation system based on logistic chaos atom search optimization BP neural network[J]. International Transactions on Electrical Energy Systems, 2023, 2023: 6328119. DOI: 10.1155/2023/6328119.
|
5 |
贺莉微, 孙朋杰, 曾琦. ERA5再分析资料在风能资源方面的应用[J]. 湖北农业科学, 2021, 60(24): 70-75. DOI: 10.14088/j.cnki.issn0439-8114.2021.24.016.
|
|
HE L W, SUN P J, ZENG Q. Application of ERA5 reanalysis data in wind energy resources[J]. Hubei Agricultural Sciences, 2021, 60(24): 70-75. DOI: 10.14088/j.cnki.issn0439-8114.2021.24.016.
|
6 |
周正斌, 张艺丹, 罗坤, 等. 基于高分辨率再分析资料的西南地区风资源特征分析[J]. 成都信息工程大学学报, 2023, 38(1): 75-82. DOI: 10.16836/j.cnki.jcuit.2023.01.012.
|
|
ZHOU Z B, ZHANG Y D, LUO K, et al. Analysis of wind resources in Southwest China based on high-resolution reanalysis data[J]. Journal of Chengdu University of Information Technology, 2023, 38(1): 75-82. DOI: 10.16836/j.cnki.jcuit.2023.01.012.
|
7 |
ZHAI R W, HUANG C J, YANG W, et al. Applicability evaluation of ERA5 wind and wave reanalysis data in the South China Sea[J]. Journal of Oceanology and Limnology, 2023, 41(2): 495-517. DOI: 10.1007/s00343-022-2047-8.
|
8 |
ZEKEIK Y, ORTIZBEVIA M J, ALVAREZ-GARCIA F J, et al. Long-term assessment of Morocco's offshore wind energy potential using ERA5 and IFREMER wind data[J]. Journal of Marine Science and Engineering, 2024, 12(3): 460. DOI: 10.3390/jmse12030460.
|
9 |
陈君来, 张周文, 陈蔚华, 等. ERA5再分析数据在中小型水库水位模拟的适用性分析——以长江水库为例[J]. 人民珠江, 2023, 44(12): 127-135.
|
|
CHEN J L, ZHANG Z W, CHEN W H, et al. Applicability of ERA5 reanalysis data in simulating water level of medium and small-scale reservoirs: A case study of Changjiang reservoir[J]. Pearl River, 2023, 44(12): 127-135.
|
10 |
BELMONTE RIVAS M, STOFFELEN A. Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT[J]. Ocean Science, 2019, 15(3): 831-852. DOI: 10.5194/os-15-831-2019.
|
11 |
黄凤新, 刘寿东, 祝赢, 等. 基于滚动极值处理的BP神经网络方法的WRF模式预报风速订正[J]. 科学技术与工程, 2013, 13(7): 1768-1772. DOI: 10.3969/j.issn.1671-1815.2013.07.012.
|
|
HUANG F X, LIU S D, ZHU Y, et al. Application of BP neural network based on rolling extremal management in revising wind speed forecasting of WRF model[J]. Science Technology and Engineering, 2013, 13(7): 1768-1772. DOI: 10.3969/j.issn.1671-1815.2013.07.012.
|
12 |
李晓娟, 张芳媛, 喻玲. 基于主成分分析-BP神经网络的风电备件需求预测[J]. 科学技术与工程, 2024, 24(1): 281-288.
|
|
LI X J, ZHANG F Y, YU L. Wind power spare parts demand forecasting based on PCA-BP neural network[J]. Science Technology and Engineering, 2024, 24(1): 281-288.
|
13 |
史博明. 基于组合模型的短期风电功率预测研究[D]. 石家庄: 河北科技大学, 2021. DOI: 10.27107/d.cnki.ghbku.2021.000448.
|
|
SHI B M. Research on short-term wind power forecasting based on combined model[D]. Shijiazhuang: Hebei University of Science and Technology, 2021. DOI: 10.27107/d.cnki.ghbku. 2021.000448.
|
14 |
逯登龙, 高鹏, 范丽锋, 等. 基于GA- BP神经网络的风电功率预测方法研究[J]. 自动化仪表, 2024, 45(3): 97-102. DOI: 10.16086/j.cnki.issn1000-0380.2022030096.
|
|
LU D L, GAO P, FAN L F, et al. Research on wind power prediction method based on GA-BP neural network[J]. Process Automation Instrumentation, 2024, 45(3): 97-102. DOI: 10.16086/j.cnki.issn1000-0380.2022030096.
|