Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (8): 3185-3193.doi: 10.19799/j.cnki.2095-4239.2025.0110
• Energy Storage System and Engineering • Previous Articles
Jiulin CHEN(), Xiaodi XUE(
), Li WANG, Zhijue XING
Received:
2025-02-06
Revised:
2025-02-18
Online:
2025-08-28
Published:
2025-08-18
Contact:
Xiaodi XUE
E-mail:jlchen_sust@163.com;xiaodi_xue@126.com
CLC Number:
Jiulin CHEN, Xiaodi XUE, Li WANG, Zhijue XING. Experimental investigation of thermal performance in a solid sensible heat storage device for medium-high-temperature flue gas waste heat recovery[J]. Energy Storage Science and Technology, 2025, 14(8): 3185-3193.
[1] | 胡鞍钢. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科学版), 2021, 21(3): 1-15. |
HU A G. China's goal of achieving carbon peak by 2030 and its main approaches[J]. Journal of Beijing University of Technology (Social Sciences Edition), 2021, 21(3): 1-15. | |
[2] | 熊超, 李新创, 李冰. 双碳目标下的钢铁节能理念创新与能源结构重塑探讨[J]. 中国冶金, 2021, 31(9): 59-63. DOI: 10.13228/j.boyuan.issn1006-9356.20210298. |
XIONG C, LI X C, LI B. Discussion on steel energy-saving concept innovation and energy structure reconstruction under "double carbon" target[J]. China Metallurgy, 2021, 31(9): 59-63. DOI: 10.13228/j.boyuan.issn1006-9356.20210298. | |
[3] | 魏一鸣, 余碧莹, 唐葆君, 等. 中国碳达峰碳中和时间表与路线图研究[J]. 北京理工大学学报(社会科学版), 2022, 24(4): 13-26. DOI: 10.15918/j.jbitss1009-3370.2022.1165. |
WEI Y M, YU B Y, TANG B J, et al. Roadmap for achieving China's carbon peak and carbon neutrality pathway[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2022, 24(4): 13-26. DOI: 10.15918/j.jbitss1009-3370.2022.1165. | |
[4] | 路哲. 我国工业余热回收利用技术现状分析[J]. 装备制造技术, 2019(12): 204-206. |
LU Z. Analysis on current situation of industrial waste heat recovery in China[J]. Equipment Manufacturing Technology, 2019(12): 204-206. | |
[5] | 何雅玲. 热储能技术在能源革命中的重要作用[J]. 科技导报, 2022, 40(4): 1-2. |
HE Y L. The important role of thermal energy storage technology in the energy revolution[J]. Science & Technology Review, 2022, 40(4): 1-2. | |
[6] | 姜竹, 邹博杨, 丛琳, 等. 储热技术研究进展与展望[J]. 储能科学与技术, 2022, 11(9): 2746-2771. DOI: 10.19799/j.cnki.2095-4239. 2021.0538. |
JIANG Z, ZOU B Y, CONG L, et al. Recent progress and outlook of thermal energy storage technologies[J]. Energy Storage Science and Technology, 2022, 11(9): 2746-2771. DOI: 10.19799/j.cnki.2095-4239.2021.0538. | |
[7] | FERNANDEZ A I, MARTÍNEZ M, SEGARRA M, et al. Selection of materials with potential in sensible thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2010, 94(10): 1723-1729. DOI: 10.1016/j.solmat.2010.05.035. |
[8] | KHARE S, DELL'AMICO M, KNIGHT C, et al. Selection of materials for high temperature sensible energy storage[J]. Solar Energy Materials and Solar Cells, 2013, 115: 114-122. DOI: 10. 1016/j.solmat.2013.03.009. |
[9] | LAING D, LEHMANN D, FIß M, et al. Test results of concrete thermal energy storage for parabolic trough power plants[J]. Journal of Solar Energy Engineering, 2009, 131(4): 041007. DOI: 10.1115/1.3197844. |
[10] | SKINNER J E, STRASSER M N, BROWN B M, et al. Testing of high-performance concrete as a thermal energy storage medium at high temperatures[J]. Journal of Solar Energy Engineering, 2014, 136(2): 021004. DOI: 10.1115/1.4024925. |
[11] | RAHJOO M, GORACCI G, MARTAUZ P, et al. Geopolymer concrete performance study for high-temperature thermal energy storage (TES) applications[J]. Sustainability, 2022, 14(3): 1937. DOI: 10.3390/su14031937. |
[12] | STEINMANN W D, ODENTHAL C, ECK M. System analysis and test loop design for the CellFlux storage concept[J]. Energy Procedia, 2014, 49: 1024-1033. DOI: 10.1016/j.egypro.2014.03.110. |
[13] | EGGERS J R, VON DER HEYDE M, THAELE S H, et al. Design and performance of a long duration electric thermal energy storage demonstration plant at megawatt-scale[J]. Journal of Energy Storage, 2022, 55: 105780. DOI: 10.1016/j.est.2022.105780. |
[14] | ODENTHAL C, STEINMANN W D, ZUNFT S. Analysis of a horizontal flow closed loop thermal energy storage system in pilot scale for high temperature applications-Part I: Experimental investigation of the plant[J]. Applied Energy, 2020, 263: 114573. DOI: 10.1016/j.apenergy.2020.114573. |
[15] | 王艳, 白凤武, 杨贝, 等. 高温显热-潜热复合储热系统传热特性研究[J]. 储能科学与技术, 2017, 6(4): 719-725. |
WANG Y, BAI F W, YANG B, et al. Heat transfer behavior of a combined sensible-latent thermal energy storage system for high temperature appilications[J]. Energy Storage Science and Technology, 2017, 6(4): 719-725. | |
[16] | 孙守斌, 姚华, 刘常鹏, 等. 钢铁行业中低温烟气余热相变储热装置特性分析[J]. 储能科学与技术, 2020, 9(3): 730-734. DOI: 10.19799/j.cnki.2095-4239.2020.0051. |
SUN S B, YAO H, LIU C P, et al. Characteristics analysis of the phase change thermal storage equipment for medium and low temperature flue gas from steel industry[J]. Energy Storage Science and Technology, 2020, 9(3): 730-734. DOI: 10.19799/j.cnki.2095-4239.2020.0051. | |
[17] | 肖刚, 祝培旺, 甘晟池. 锅炉烟气储热系统: CN119333847A[P]. 2025-01-21. |
XIAO G, ZHU P W, GAN S C. Boiler flue gas heat storage system: CN119333847A[P]. 2025-01-21. | |
[18] | 陈久林, 薛晓迪, 邢至珏, 等. 一种储热装置: CN116222279A[P]. 2023-06-06. |
CHEN J L, XUE X D, XING Z J, et al. Heat storage device: CN116222279A[P]. 2023-06-06. | |
[19] | KOUSKSOU T, STRUB F, CASTAING LASVIGNOTTES J, et al. Second law analysis of latent thermal storage for solar system[J]. Solar Energy Materials and Solar Cells, 2007, 91(14): 1275-1281. DOI: 10.1016/j.solmat.2007.04.029. |
[20] | MOFFAT R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17. DOI: 10.1016/0894-1777(88)90043-X. |
[1] | Yalong CHENG, Kunfeng LIANG, Xun ZHOU, Miaomiao LIU, Gangxin LYU, Yitian SONG. Natural stratification-based cooling characteristics of a microencapsulated phase-change material suspension and its parametric optimization study [J]. Energy Storage Science and Technology, 2025, 14(6): 2256-2269. |
[2] | Shunxin LIU, Haoyang LI, Jianxing ZHANG, Guang ZENG, Lingping XU. A study on the synergistic optimization of flow channel structures and guide plates in a 280 Ah air-cooled battery pack for energy storage [J]. Energy Storage Science and Technology, 2025, 14(5): 1806-1817. |
[3] | Junsheng FENG, Yaru YAN, Lu WANG, Liang ZHAO, Hui DONG. Research on thermal economic performance of HP-ORC pumped thermal energy storage system coupled with low-temperature waste heat [J]. Energy Storage Science and Technology, 2025, 14(5): 2130-2140. |
[4] | Junsheng FENG, Yaru YAN, Liang ZHAO, Hui DONG. Performance analysis of a Carnot battery thermal energy storage system based on organic Rankine cycle [J]. Energy Storage Science and Technology, 2024, 13(11): 3930-3938. |
[5] | Min ZHAO, Yang LI, Jie CAI, Weibin KANG, Lei LIU. Experimental study on the performance of capillary phase-change energy storage tank for civil building [J]. Energy Storage Science and Technology, 2023, 12(8): 2626-2637. |
[6] | Ziou YUAN, Feng WANG, Xingzhao QI, Qi ZHANG, Rui MA. Performance analysis of mixed sodium waste salts applied in a thermal storage field [J]. Energy Storage Science and Technology, 2023, 12(12): 3616-3626. |
[7] | Hongbing CHEN, Chunyang LI, Congcong WANG, Men LI, Haoyang LU, Yuhang LIU, Yan ZHANG. Preparation and properties of binary composite phase-change materials based on solar low-temperature heat storage [J]. Energy Storage Science and Technology, 2023, 12(12): 3663-3669. |
[8] | Liang WANG, Xin LIU, Changan WANG, Shengnian TIE. Preparation and thermal performance of nitrogen-doped porous carbon sponge-type mirabilite-based composite phase-change material [J]. Energy Storage Science and Technology, 2023, 12(1): 79-85. |
[9] | Zhiguo AN, Xian ZHANG, Hui ZHU, Chunjie ZHANG. Heat dissipation performance of honeycomb-like thermal management system combined CPCM with water cooling for lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 211-220. |
[10] | Hang TU, Hang ZHANG, Lihui LIU, Jie LI, Xiaoqin SUN. Study on heat transfer of phase change materials imbedded in a concrete wall [J]. Energy Storage Science and Technology, 2021, 10(1): 287-294. |
[11] | ZHANG Shuyang 1, XIA Yi2, ZHANG Xiaosong1. An experimental study on a radiant floor system with double-layered phase change materials [J]. Energy Storage Science and Technology, 2017, 6(4): 730-738. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||