Energy Storage Science and Technology
Received:
2025-03-14
Revised:
2025-04-07
CLC Number:
1 | 肖先勇, 郑子萱. "双碳"目标下新能源为主体的新型电力系统:贡献、关键技术与挑战[J]. 工程科学与技术, 2022, 54(01): 47-59. |
XIAO X Y, ZHENG Z X. New Power Systems Dominated by Renewable Energy Towards the Goal of Emission Peak & Carbon Neutrality: Contribution, Key Techniques, and Challenges[J]. Engineering Science and Technology, 2022, 54(01): 47-59. | |
2 | 陈云瑶, 陈玉州, 加央拉姆, 等. 兼顾保供与消纳的高比例清洁能源系统储能优化配置运行策略[J]. 储能科学与技术, 2023, 12(02): 1-14. |
CHEN Y Y, CHEN Y Z, JIAYANG L M, et al. Optimization and Operation Strategy for Energy Storage Configuration in High Proportion Clean Energy Systems Considering Both Supply Reliability and Energy Utilization[J]. Energy Storage Science and Technology, 2023, 12(02): 1-14. | |
3 | 周涛, 贺伟, 李会芳, 等. 新型电力系统下储能辅助运行与优化配置研究综述[J/OL]. 南京信息工程大学学报, 1-25[2025-03-03]. https://doi.org/10.13878/j.cnki.jnuist.20241019001. |
ZHOU T, HE W, LI H F, et al. Overview of energy storage system assistant operation and optimization configuration research in new power systems[J/OL]. Journal of Nanjing University of Information Science and Technology, 1-25 [2025-03-03]. https://doi.org/10.13878/j.cnki.jnuist.20241019001. | |
4 | 冯梦圆, 文书礼, 时珊珊, 等. 满足新型电力系统调峰调频需求的储能优化配置及运行研究综述[J/OL]. 上海交通大学学报, 1-32 [2025-03-03]. https://doi.org/10.16183/j.cnki.jsjtu.2024.128. |
FENG M Y, WEN S L, SHI S S, et al. A Review of Optimal Allocation and Operation of Energy Storage System for Peak Shaving and Frequency Regulation in New Type Power Systems[J/OL]. Journal of Shanghai Jiao Tong University, 1-32 [2025-03-03]. https://doi.org/10.16183/j.cnki.jsjtu.2024.128. | |
5 | 余文宾. 基于混合储能的新能源汽车能量管理策略研究[D]. 吉林大学, 2024. |
YU W B. Study on Energy Management Strategy for New Energy Vehicles based on Hybrid Energy Storage[D]. Jilin University, 2024. | |
6 | 程龙, 张方华. 用于混合储能系统平抑功率波动的小波变换方法[J]. 电力自动化设备, 2021, 41(03): 100-104+128. |
CHENG L, ZHANG F H. Wavelet Transform Method for Power Fluctuation Mitigation in Hybrid Energy Storage Systems[J]. Electric Power Automation Equipment, 2021, 41(03): 100-104+128. | |
7 | 苏浩, 张建成, 冯冬涵, 等. 模块化混合储能系统及其能量管理策略[J]. 电力自动化设备, 2019, 39(01): 127-133+140. |
SU H, ZHANG J C, FENG D H, et al. Modular hybrid energy storage system and its energy management strategy[J]. Electric Power Automation Equipment, 2019, 39(01): 127-133+140. | |
8 | 赵靖英, 乔珩埔, 姚帅亮, 等. 考虑储能SOC自恢复的风电波动平抑混合储能容量配置策略[J]. 电工技术学报, 2024, 39(16): 5206-5219. |
ZHAO J Y, QIAO H P, YAO S L, et al. Hybrid Energy Storage System Capacity Configuration Strategy for Stabilizing Wind Power Fluctuation Considering SOC Self-Recovery[J]. Transactions of China Electrotechnical Society, 2024, 39(16): 5206-5219. | |
9 | 桑丙玉, 王德顺, 杨波, 等. 平滑新能源输出波动的储能优化配置方法[J]. 中国电机工程学报, 2014, 34(22): 3700-3706. |
SANG B Y, WANG D S, YANG B, et al. Optimal Allocation of Energy Storage System for Smoothing the Output Fluctuations of New Energy[J]. Proceedings of the CSEE, 2014, 34(22): 3700-3706. | |
10 | 钟国彬, 吴涛, 曾杰, 等. 基于离散傅里叶变换的主动配电网混合储能容量优化配置[J]. 电力建设, 2018, 39(08): 85-93. |
ZHONG G B, WU T, ZENG J, et al. Optimal Capacity Planning of Hybrid Energy Storage System in Active Distribution Network on the Basis of Discrete Fourier Transform[J]. Electric Power Construction, 2018, 39(08): 85-93. | |
11 | 卢芸, 徐骏. 基于小波包分解的风电混合储能容量配置方法[J]. 电力系统保护与控制, 2016, 44(11): 149-154. |
LU Y, XU J. Wind power hybrid energy storage capacity configuration based on wavelet packet decomposition[J]. Power System Protection and Control, 2016, 44(11): 149-154. | |
12 | 张晴, 李欣然, 杨明, 等. 净效益最大的平抑风电功率波动的混合储能容量配置方法[J]. 电工技术学报, 2016, 31(14): 40-48. |
ZHANG Q, LI X R, YANG M, et al. Capacity determination of hybrid energy storage system for smoothing wind power fluctuations with maximum net benefit[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 40-48. | |
13 | 刘抒睿, 李培强, 陈家煜, 等. 基于VMD分解下的皮尔逊相关性分析及T-tFD的混合储能容量配置[J]. 中国电力, 2024, 57(07): 82-97. |
LIU S R, LI P Q, CHEN J Y, et al. Capacity Configuration of Hybrid Energy Storage System Based on VMD Decomposition, Pearson Correlation Analysis, and T-tFD[J]. Electric Power, 2024, 57(07): 82-97. | |
14 | 李明, 刘国营, 张国锋, 等. 基于离散傅里叶变换的直流微电网储能调控方法研究[J]. 电子设计工程, 2021, 29(11): 70-73+79. |
LI M, LIU G Y, ZHANG G F, et al. Research on DC microgrid energy storage control method based on discrete Fourier transform[J]. Electronic Design Engineering, 2021, 29(11): 70-73+79. | |
15 | 孙振新, 李海昭, 张秩鸣, 等. 克劳修斯熵在多时间尺度储能配置问题上的应用[J]. 热力发电, 2024, 53(09): 92-99. |
SUN Z X, LI H Z, ZHANG Z M, et al. Application of Clausius entropy to energy storage configuration problems at multi-time scale[J]. | |
Thermal Power Generation, 2024, 53(09): 92-99. | |
16 | 肖峻, 白临泉, 王成山, 等. 基于频谱分析的孤立微网中储能和柴油发电机容量的优化方法[J]. 电网技术, 2014, 38(09): 2342-2348. |
XIAO J, BAI L Q, WANG C S, et al. Spectrum Analysis Based Capacity Optimization Method of Energy Storage and Diesel Engines in Island Microgrids[J]. Power System Technology, 2014, 38(09): 2342-2348. | |
17 | 陈厚合, 杜欢欢, 张儒峰, 等. 考虑风电不确定性的混合储能容量优化配置及运行策略研究[J]. 电力自动化设备, 2018, 38(08): 174-182+188. |
CHEN H H, DU H H, ZHANG R F, et al. Optimal Capacity Configuration and Operation Strategy of Hybrid Energy Storage Considering Uncertainty of Wind Power[J]. Electric Power Automation Equipment, 2018, 38(08): 174-182+188. | |
18 | 王利猛, 刘久成, 田春光, 等. 基于统计学方法的微网混合储能容量优化配置[J]. 电网技术, 2018, 42(01): 187-194. |
WANG L M, LIU J C, TIAN C G, et al. Capacity Optimization of Hybrid Energy Storage in Microgrid Based on Statistic Method[J]. Power System Technology, 2018, 42(01): 187-194. | |
19 | MAO M, LIU Y, JIN P, et al. Energy coordinated control of hybrid battery-supercapacitor storage system in a microgrid[C]// proceedings of the 2013 4th IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Rogers, AR, USA, 8-11 July 2013. IEEE, 2013. |
20 | MOON S-P, LABIOS R, CHANG B-H, et al. Allocation of Energy Storage Capacity for Large Wind Farms in Korea using Discrete Fourier Transform [J]. KEPCO Journal on Electric Power and Energy, 2016, 2: 377-382. |
21 | KUPERMAN A, AHARON I, KARA A, et al. A frequency domain approach to analyzing passive battery–ultracapacitor hybrids supplying periodic pulsed current loads[J]. Energy Conversion and Management, 2011, 52(12): 3433-3438. |
22 | YOUSSEF O A S. Online Applications of Wavelet Transforms to Power System Relaying - Part II[C]// proceedings of the 2007 IEEE Power Engineering Society General Meeting, Tampa, FL, USA, 24-28 June 2007, Piscataway: IEEE, 2007. |
23 | 张江林, 张亚超, 洪居华, 等. 基于离散小波变换和模糊K-modes的负荷聚类算法[J]. 电力自动化设备, 2019, 39(02): 100-106+122. |
ZHANG Jianglin, ZHANG Yachao, HONG Juhu, et al. A load clustering algorithm based on discrete wavelet transform and fuzzy K-modes[J]. Electric Power Automation Equipment, 2019, 39(02): 100-106+122. | |
24 | PINGPING Y, QITONG C, YUE M, et al. Improved Wavelet Packet of Hybrid Energy Storage to Smooth Wind Power Fluctuation[C]// proceedings of the 2021 IEEE Sustainable Power and Energy Conference (iSPEC), Nanjing, China, 23-25 Dec. 2021, Piscataway: IEEE, 2021. |
25 | JIANG Q, HONG H. Wavelet-Based Capacity Configuration and Coordinated Control of Hybrid Energy Storage System for Smoothing Out Wind Power Fluctuations [J]. IEEE Transactions on Power Systems, 2013, 28(2): 1363-1372. |
26 | TRUNG T T, AHN S-J, CHOI J-H, et al. Real-Time Wavelet-Based Coordinated Control of Hybrid Energy Storage Systems for Denoising and Flattening Wind Power Output [J]. Energies, 2014, 7(10): 6620-6644. |
27 | 张鹏, 张峰, 梁军, 等. 采用小波包分解和模糊控制的风电机组储能优化配置[J]. 高电压技术, 2019, 45(02): 609-617. |
ZHANG P, ZHANG F, LIANG J, et al. Capacity optimization of hybrid energy storage system for wind farm using wavelet packet decomposition and fuzzy control[J]. High Voltage Engineering, 2019, 45(02): 609-617. | |
28 | GUO T, LIU Y, ZHAO J, et al. A dynamic wavelet-based robust wind power smoothing approach using hybrid energy storage system[J]. International Journal of Electrical Power & Energy Systems, 2020, 116: 105579. |
29 | 吴清华. 二次调频用混合储能系统容量优化配置与实时功率分配研究[D]. 浙江大学, 2024. |
WU Q H. Research on capacity optimization and real-time power allocation of hybrid energy storage system for secondary frequency regulation[D]. Zhejiang University, 2024. | |
30 | NE H, SR L, MLC W, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995. |
31 | WU Z, HUANG N E. Ensemble Empirical Mode Decomposition: a Noise-Assisted Data Analysis Method [J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41. |
32 | TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al. A complete ensemble empirical mode decomposition with adaptive noise [C]// 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Prague, Czech Republic, 22-27 May 2011. Piscataway: IEEE, 2011: 4144-4147. |
33 | 张宁. 基于CEEMD阈值和相关系数原理的MEMS陀螺信号去噪方法[J]. 传感技术学报, 2018, 31(09): 1383-1388+1392. |
ZHANG N. Signal de-noising method for MEMS gyroscope based on CEEMD threshold and correlation coefficient principle[J]. Chinese Journal of Sensors and Actuators, 2018, 31(09): 1383-1388+1392. | |
34 | DRAGOMIRETSKIY K, ZOSSO D. Variational Mode Decomposition [J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. |
35 | ZHOU G, MIAO F, TANG X, et al. Research on wind power fluctuation and its impacts on power system frequency[J]. Applied Mechanics and Materials, 2013, 291-294: 407-414. |
36 | 孙承晨, 袁越, San Shing CHOI, 等. 基于经验模态分解和神经网络的微网混合储能容量优化配置[J]. 电力系统自动化, 2015, 39(08): 19-26. |
SUN C C, YUAN Y, CHOI S S, et al. Capacity optimization of hybrid energy storage for microgrid based on empirical mode decomposition and neural network[J]. Automation of Electric Power Systems, 2015, 39(08): 19-26. | |
37 | 郭玲娟, 魏斌, 韩肖清, 等. 基于集合经验模态分解的交直流混合微电网混合储能容量优化配置[J]. 高电压技术, 2020, 46(02): 527-537. . |
GUO L J, WEI B, HAN X Q, et al. Capacity optimal configuration of hybrid energy storage in hybrid AC/DC micro-grid based on ensemble empirical mode decomposition[J]. High Voltage Engineering, 2020, 46(02): 527-537. | |
38 | 李艳波, 杨凯, 陈俊硕, 等. 一种适用于风储微电网的混合储能系统的功率分配策略[J]. 电测与仪表, 2025, 62(02): 43-50. |
LI Y B, YANG K, CHEN J S, et al. Power distribution strategy for a hybrid energy storage system suitable for wind-storage microgrid[J]. Electrical Measurement & Instrumentation, 2025, 62(02): 43-50. | |
39 | 孟顺, 谢桦. 基于经验模态分解的平滑可再生能源功率波动的储能容量优化[J]. 电源学报, 2014, (05): 7-11+18. |
MENG S, XIE H. Energy storage capacity optimization in smoothing renewable energy power fluctuations based on empirical mode decomposition[J]. Journal of Power Supply, 2014, (05): 7-11+18. | |
40 | 杨锡运, 曹超, 李相俊, 等. 基于模糊经验模态分解的电池储能系统平滑风电出力控制策略[J]. 电力建设, 2016, 37(08): 134-140. |
YANG X Y, CAO C, LI X J, et al. Control strategy of smoothing wind power output using battery energy storage system based on fuzzy empirical mode decomposition[J]. Electric Power Construction, 2016, 37(08): 134-140. | |
41 | ZHANG L, ZHANG T, ZHANG K, et al. Research on power fluctuation strategy of hybrid energy storage to suppress wind-photovoltaic hybrid power system[J]. Energy Reports, 2023, 10: 3166-3173. |
42 | JINJUN W, KAIJIE G O U, HENG C, et al. Allocation optimization of flywheel-electrochemical hybrid energy storage capacity to stabilize wind power fluctuations[J]. Journal of Chinese Society of Power Engineering, 2024, 44(3): 439-446. |
43 | LIU W, ZHAO W, FENG C, et al. Power allocation optimization of hybrid energy storage system based on AOA-VMD[C]// Proceedings of the 11th Frontier Academic Forum of Electrical Engineering (FAFEE2024). Singapore, 2024. Singapore: Springer Nature Singapore, 2025. |
44 | YANG X, YE X, LI Z, et al. Hybrid energy storage configuration method for wind power microgrid based on EMD decomposition and two-stage robust approach[J]. Scientific Reports, 2024, 14(1): 2733. |
45 | ZHANG Y, ZHANG Y, WU T. Integrated strategy for real-time wind power fluctuation mitigation and energy storage system control[J]. Global Energy Interconnection, 2024, 7(1): 71-81. |
46 | 张国驹, 陈瑶, 唐西胜, 等. 基于波动特征参数的多类型储能协调控制[J]. 电工技术学报, 2013, 28(06): 271-276. |
ZHANG G J, CHEN Y, TANG X S, et al. Research on coordinated control strategy of multi-type energy storage based on fluctuation characteristic parameters [J]. Transactions of China Electrotechnical Society, 2013, 28(06): 271-276. | |
47 | PAATERO J V, LUND P D J W E. Effect of energy storage on variations in wind power[J]. Wind Energy, 2005, 8: 421-441. |
48 | 孙玉树, 李星, 唐西胜, 等. 应用于微网的多类型储能多级控制策略[J]. 高电压技术, 2017, 43(01): 181-188. |
SUN Y S, LI X, TANG X S, et al. Multi-level control strategy of multi-type energy storages for microgrid[J]. High Voltage Engineering, 2017, 43(01): 181-188. | |
49 | 韩晓娟, 程成, 籍天明, 等. 计及电池使用寿命的混合储能系统容量优化模型[J]. 中国电机工程学报, 2013, 33(34): 91-97+16. |
HAN X J, CHENG C, JI T M, et al. Capacity optimal modeling of hybrid energy storage systems considering battery life [J]. Proceedings of the CSEE, 2013, 33(34): 91-97+16. | |
50 | CAO J, DU W, WANG H, et al. Optimal sizing and control strategies for hybrid storage system as limited by grid frequency deviations[J]. IEEE Transactions on Power Systems, 2018, 33(5): 5486-5495. |
51 | 宇航. 利用储能系统平抑风电功率波动的仿真研究[D]. 东北电力大学, 2010. |
YU H. Simulation research on smoothing the wind power fluctuation by using energy storage system[D]. Northeast Electric Power University, 2010. | |
52 | 王苏蓬, 张新慧, 张军, 等. 基于WPD-LPF和灰色关联度的混合储能平抑风电波动控制策略[J]. 可再生能源, 2022, 40(09): 1241-1248. |
WANG S P, ZHANG X H, ZHANG J, et al. Control strategy of hybrid energy storage for smoothing wind power fluctuations based on WPD-LPF and grey relational analysis[J]. Renewable Energy, 2022, 40(09): 1241-1248. | |
53 | 吕超贤, 李欣然, 户龙辉, 等. 基于小波分频与双层模糊控制的多类型储能系统平滑策略[J]. 电力系统自动化, 2015, 39(02): 21-29. |
LV C X, LI X R, HU L H, et al. Smoothing strategy of multi-type energy storage systems based on wavelet band-pass filtering and dual-layer fuzzy control[J]. Automation of Electric Power Systems, 2015, 39(02): 21-29. | |
54 | WALSH J L. A closed set of normal orthogonal functions [J]. American Journal of Mathematics, 1923, 45(1): 5-24. |
55 | 鲁建华. 类Walsh序的Walsh函数及其应用[D]. 武汉: 华中科技大学, 2004. |
Lu J H. Walsh Functions of Quasi-Walsh Order and Its Applications[D]. Wuhan: Huazhong University of Science and Technology, 2004. | |
56 | 李宝安, 李行善, 刘星. Walsh变换对冲击信号序列特征提取的研究[J]. 北京航空航天大学学报, 2003, (09): 802-806. |
LI B A, LI X S, LIU X. Research on feature extraction of impulse signal using Walsh transform[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, (09): 802-806. | |
57 | LI M-F, MO X-F, ZHAO L-J, et al. Single-pixel remote imaging based on Walsh-Hadamard transform[J]. Acta Physica Sinica, 2016, 65(6): 064201. |
58 | KARP R M. The fast Walsh-Hadamard transform[J]. IEEE Transactions on Computers, 1968, C-18(10): 902-908. |
59 | HADAMARD J S. Résolution d'une question relative aux déterminants[J]. Bulletin des Sciences Mathématiques, 1893, 17: 240-246. |
60 | 姜文博, 陈念, 郭东杰, 等. 基于自适应沃尔什-哈达玛变换的焊缝图像压缩方法[J]. 无损检测, 2023, 45(11): 67-71. |
JIANG W B, CHEN N, GUO D J, et al. Weld image compression method based on adaptive Walsh-Hadamard transform[J]. Nondestructive Testing, 2023, 45(11): 67-71. | |
61 | 经哲, 郭利. Walsh变换与数学形态学的特征提取对比研究[J]. 自动化仪表, 2015, 36(12): 19-22. |
JING Z, GUO L. Walsh Transform Compared with Mathematics Morphology in Feature Extraction[J]. Process Automation Instrumentation, 2015, 36(12): 19-22. | |
62 | MARAŞ M, AYVAZ E N, GÖMEÇ M, et al. A novel GFDM waveform design based on cascaded WHT-LWT transform for the beyond 5G wireless communications[J]. Sensors (Basel), 2021, 21(5): 1831. |
63 | TIAN J, PEI H Z, REN S G, et al. High-speed memristive Walsh-Hadamard Transform for image compression[C]// Proceedings of the 2024 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA). Hangzhou, China, 2024. Piscataway: IEEE, 2024: 58-59. |
64 | 刘江涛, 廖东良, 葛新民, 等. Walsh反演法在提高滩坝砂薄层测井曲线分辨率中的应用——以沾化凹陷为例[J]. 石油天然气学报, 2013, 35(12): 93-97+7. |
Liu J T, Liao D L, Ge X M, et al. Application of Walsh inversion method in improving the resolution of well logging curves in thin layers of beach barrier sandstone: A case study of Zhanhua Depression[J]. Journal of Oil and Gas Technology, 2013, 35(12): 93-97+7. | |
65 | 李庆谋, 成秋明, 刘少华. Walsh列率域中多维分形模型与GIS环境下地球物理信号处理[J]. 地球物理学报, 2007, (06): 1884-1893. |
Li Q M, Cheng Q M, Liu S H. Scale invariant property in Walsh frequency domain and a multifractal model for geophysical data processing in GIS environment[J]. Chinese Journal of Geophysics, 2007, (06): 1884-1893. | |
66 | ZHIHUA L, QISHAN Z. Introduction to bridge functions [J]. IEEE Transactions on Electromagnetic Compatibility, 1983, EMC-25(4): 459-464. |
67 | 张其善, 张有光. 桥函数理论及其应用[M]. 北京: 科学出版社, 1992. |
ZHANG Q S, ZHANG Y G. Theory and Application of Bridge Functions [M]. Beijing: Science Press, 1992. | |
68 | 张凤元, 徐亚飞. 桥函数智能码在认知超宽带无线电中的应用[J]. 遥测遥控, 2012, 33(05): 11-15. |
ZHANG F Y, XU Y F. Application of bridge function intelligent codes in cognitive ultra-wideband radio [J]. Telemetry and Telecontrol, 2012, 33(05): 11-15. | |
69 | 竺南直, 张其善. 广义沃尔什函数复制理论及其应用[J]. 电子学报, 1994, (01): 32-37. |
ZHU N Z, ZHANG Q S. Copy Theory of Generalized Walsh and Its Application[J]. Acta Electronica Sinica, 1994, (01): 32-37. | |
70 | 王钢, 张其善. 一种新型非正弦函数——混合进制广义桥函数的复制生成算法及其主要性质[J]. 中国科学E辑: 信息科学, 2005, (10): 1064-1071. |
WANG G, ZHANG Q S. A new type of non-sinusoidal function—replication algorithm and main properties of mixed-radix generalized bridge functions [J]. Science in China Series E: Information Sciences, 2005, 48(10): 1064-1071. | |
71 | 徐亚飞. 桥函数在超宽带认知无线电中的应用[D]. 北京化工大学, 2012. |
XU Y F. The application of bridge function smart codes in UWB cognitive radio systems [D]. Beijing University of Chemical Technology, 2012. | |
72 | 张其善, 常青. 桥函数理论综述[J]. 航空学报, 2002, (05): 436-440. |
ZHANG Q S, CHANG Q. Summary of bridge function theory [J]. Acta Aeronautica et Astronautica Sinica, 2002, (05): 436-440. | |
73 | HAAR A. Zur Theorie der orthogonalen Funktionensysteme [J]. Mathematische Annalen, 1910, 69(3): 331-371. |
74 | 赵志栋. 基于小波变换的指纹图像压缩算法研究[D]. 浙江大学, 2013. |
ZHAO Z D. Research on Fingerprint Image Compressing Based on Wavelet Transform[D]. Zhejiang University, 2013. | |
75 | STANKOVIĆ R S, FALKOWSKI B J. The Haar wavelet transform: its status and achievements[J]. Computers & Electrical Engineering, 2003, 29(1): 25-44. |
76 | 李琳, 靳志鑫, 俞晓磊, 等. Haar小波下采样优化YOLOv9的道路车辆和行人检测[J]. 计算机工程与应用, 2024, 60(20): 207-214. |
Li L, Jin Z X, Yu X L, et al. Road Vehicle and Pedestrian Detection Based on YOLOv9 for Haar Wavelet Downsampling[J]. Computer Engineering and Applications, 2024, 60(20): 207-214. | |
77 | 申永鹏, 孙嵩楠, 王延峰, 等. 混合储能系统闭环Haar小波变换能量管理方法[J]. 太阳能学报, 2023, 44(10): 523-530. |
Shen Y P, Sun S N, Wang Y F, et al. Closed-Loop Haar Wavelet Transform Energy Management Method for Hybrid Energy Storage Systems[J]. Acta Energiae Solaris Sinica, 2023, 44(10): 523-530. | |
78 | 张利. 基于Haar小波与经验小波变换的短时人体行为识别[D]. 安庆师范大学, 2023. |
ZHANG L. Short-time human activity recognition based on Haar wavelet and empirical wavelet transform [D]. Anqing Normal University, 2023. | |
79 | 申永鹏, 孙建彬, 王延峰, 等. 电动汽车混合储能装置小波功率分流方法[J]. 中国电机工程学报, 2021, 41(13): 4636-4646. |
Shen Y P, Sun J B, Wang Y F, et al. Power Distribution Method of Wavelet for Hybrid Energy Storage Systems in an Electric Vehicle[J]. Proceedings of the CSEE, 2021, 41(13): 4636-4646. | |
80 | Zhang X, Mi C C, Masrur A, et al. Wavelet-transform-based power management of hybrid vehicles with multiple on-board energy sources including fuel cell, battery and ultracapacitor[J]. Journal of Power Sources, 2008, 185(2): 1533-1543. |
[1] | SUN Shuwei, ZHAO Huiling, YU Caiyan, BAI Ying. Experimental measurement and analysis of Raman/infrared methods for lithium batteries [J]. Energy Storage Science and Technology, 2019, 8(5): 975-996. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||