1 |
LAURO S N, BURROW J N, MULLINS C B. Restructuring the lithium-ion battery: A perspective on electrode architectures [J]. eScience, 2023, 3(4): 100152.
|
2 |
BAUER A, SONG J, VAIL S, et al. The Scale-up and Commercialization of Nonaqueous Na-Ion Battery Technologies [J]. Advanced Energy Materials, 2018, 8(17): 1702869.
|
3 |
GAO X, XING Z, WANG M, et al. Comprehensive insights into solid-state electrolytes and electrode-electrolyte interfaces in all-solid-state sodium-ion batteries [J]. Energy Storage Materials, 2023, 60: 102821.
|
4 |
MA Q, TSAI C-L, WEI X-K, et al. Room temperature demonstration of a sodium superionic conductor with grain conductivity in excess of 0.01 S cm-1 and its primary applications in symmetric battery cells [J]. Journal of Materials Chemistry A, 2019, 7(13): 7766-76.
|
5 |
SHEN L, YANG J, LIU G, et al. High ionic conductivity and dendrite-resistant NASICON solid electrolyte for all-solid-state sodium batteries [J]. Materials Today Energy, 2021, 20: 100691.
|
6 |
MA Q, GUIN M, NAQASH S, et al. Scandium-Substituted Na3Zr2(SiO4)2(PO4) Prepared by a Solution-Assisted Solid-State Reaction Method as Sodium-Ion Conductors [J]. Chemistry of Materials, 2016, 28: 4821.
|
7 |
YANG J, LIU G, AVDEEV M, et al. Ultrastable All-Solid-State Sodium Rechargeable Batteries [J]. ACS Energy Letters, 2020, 5(9): 2835-41.
|
8 |
WANG X, FAN Y, LI J, et al. Comprehensive understanding of the Na1+xZr2SixP3-xO12 solid-state electrolyte in advanced sodium metal batteries: a critical review [J]. Energy & Environmental Science, 2025, 18(3): 1096-129.
|
9 |
MIAO X, DI H, GE X, et al. AlF3-modified anode-electrolyte interface for effective Na dendrites restriction in NASICON-based solid-state electrolyte [J]. Energy Storage Materials, 2020, 30: 170-8.
|
10 |
LIU T, SHEN L, LI Y, et al. NaF-Rich Multifunctional Layers toward Stable All-Solid-State Sodium Batteries [J]. ACS Applied Materials & Interfaces, 2023, 15(38): 45026-34.
|
11 |
XIANG L, JIANG D, GAO Y, et al. Self-Formed Fluorinated Interphase with Fe Valence Gradient for Dendrite-Free Solid-State Sodium-Metal Batteries [J]. Advanced Functional Materials, 2024, 34(5): 2301670.
|
12 |
LU Y, ALONSO J A, YI Q, et al. A High-Performance Monolithic Solid-State Sodium Battery with Ca2+ Doped Na3Zr2Si2PO12 Electrolyte [J]. Advanced Energy Materials, 2019, 9(28): 1901205.
|
13 |
WANG X, CHEN J, MAO Z, WANG D. Effective resistance to dendrite growth of NASICON solid electrolyte with lower electronic conductivity [J]. Chemical Engineering Journal, 2022, 427: 130899.
|
14 |
LIU F, WANG L, LING F, et al. Homogeneous Metallic Deposition Regulated by Porous Framework and Selenization Interphase Toward Stable Sodium/Potassium Anodes [J]. Advanced Functional Materials, 2022, 32(49): 2210166.
|
15 |
FU H, YIN Q, HUANG Y, et al. Reducing Interfacial Resistance by Na-SiO2 Composite Anode for NASICON-Based Solid-State Sodium Battery [J]. ACS Materials Letters, 2020, 2(2): 127-32.
|
16 |
NI Q, XIONG Y, SUN Z, et al. Rechargeable Sodium Solid-State Battery Enabled by In Situ Formed Na-K Interphase [J]. Advanced Energy Materials, 2023, 13(17): 2300271.
|
17 |
XU H, ZHANG J, ZHANG H, et al. In Situ Topological Interphases Boosting Stable Solid-State Lithium Metal Batteries [J]. Advanced Energy Materials, 2023, 13(21): 2204411.
|
18 |
ZHOU X, LIU F, WANG Y, et al. Heterogeneous Interfacial Layers Derived from the In Situ Reaction of CoF2 Nanoparticles with Sodium Metal for Dendrite-Free Na Metal Anodes [J]. Advanced Energy Materials, 2022, 12(42): 2202323.
|
19 |
JIANG Y, YANG Y, LING F, et al. Artificial Heterogeneous Interphase Layer with Boosted Ion Affinity and Diffusion for Na/K-Metal Batteries [J]. Advanced Materials, 2022, 34(13): 2109439.
|
20 |
LING F, DIAO J, YAO Y, et al. Enabling Long-Life All-Solid-State Sodium Metal Batteries via in situ Construction of a Stable Solid Electrolyte Interphase [J]. Advanced Functional Materials, 2025: 2419970.
|
21 |
LIU T, XIANG P, LI Y, et al. In Situ Forming Na-Sn Alloy/Na2S Interface Layer for Ultrastable Solid State Sodium Batteries [J]. Advanced Functional Materials, 2024, 34(32): 2316528.
|
22 |
CHEN H, WANG T, WANG Z, et al. Unlocking Solid-State Sodium-Metal Batteries at -15 °C by Electrolyte Optimization and Interface Regulation [J]. ACS Applied Materials & Interfaces, 2025, 17(1): 1119-26.
|
23 |
MOORTHY M, MOORTHY B, GANESAN B K, et al. A Series of Hybrid Multifunctional Interfaces as Artificial SEI Layer for Realizing Dendrite Free, and Long-Life Sodium Metal Anodes [J]. Advanced Functional Materials, 2023, 33(42): 2300135.
|
24 |
HU K, LV G, ZHANG J, et al. Na2S Treatment and Coherent Interface Modification of the Li-Rich Cathode to Address Capacity and Voltage Decay [J]. ACS Applied Materials & Interfaces, 2020, 12(38): 42660-8.
|
25 |
DEMINSKYI P, ROUF P, IVANOV I G, PEDERSEN H. Atomic layer deposition of InN using trimethylindium and ammonia plasma [J]. Journal of Vacuum Science & Technology A, 2019, 37(2): 020926.
|
26 |
WAN H, WANG Z, LIU S, et al. Critical interphase overpotential as a lithium dendrite-suppression criterion for all-solid-state lithium battery design [J]. Nature Energy, 2023, 8(5): 473-81.
|
27 |
SARKAR S, THANGADURAI V. Critical Current Densities for High-Performance All-Solid-State Li-Metal Batteries: Fundamentals, Mechanisms, Interfaces, Materials, and Applications [J]. ACS Energy Letters, 2022, 7(4): 1492-527.
|