Energy Storage Science and Technology
Previous Articles Next Articles
WEN Jian(✉),XIA Zhihao,AN Yingxian,WEN Han,KE Fanglong,HU Zhangmao(✉),WANG Wei,LV Youfu
Received:2025-11-04
Revised:2025-12-02
Contact:
HU Zhangmao
E-mail:wenjian_0427@163.com;huzhangmao@163.com
CLC Number:
WEN Jian, XIA Zhihao, AN Yingxian, WEN Han, KE Fanglong, HU Zhangmao, WANG Wei, LV Youfu. Experimental study on thermal management of all-weather batteries based on high-concentration phase change microcapsule suspension[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.1000.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: https://esst.cip.com.cn/EN/10.19799/j.cnki.2095-4239.2025.1000
| [1]Gharehghani A, Rabiei M, Mehranfar S, et al. Progress in Battery Thermal Management Systems Technologies for Electric Vehicles [J]. Renewable and Sustainable Energy Reviews, 2024, 202: 114654. DOI: 10.1016/j.rser.2024.114654. [百度学术] [2]Li H, Xiao X, Wang Y, et al. Performance Investigation of a Battery Thermal Management System with Microencapsulated Phase Change Material Suspension [J]. Applied Thermal Engineering, 2020, 180: 115795. DOI: 10.1016/j.applthermaleng.2020.115795. [百度学术] [3]Ma J, Sun Y F, Zhang S. Experimental Investigation on Energy Consumption of Power Battery Integrated Thermal Management System [J]. ENERGY, 2023, 270: 126860. DOI: 10.1016/j.energy.2023.126860. [百度学术] [4]Li Z C, Zhang Y, Meng F T, et al. Flexible Phase Change Materials for Low Temperature Thermal Management in Lithium-Ion Batteries [J]. JOURNAL OF ENERGY STORAGE, 2023, 74: 109413. DOI: 10.1016/j.est.2023.109413. [百度学术] [5]Zhou X, Abed A M, Chaturvedi R, et al. A Novel Thermal Management System for a Cylindrical Battery Based on Tubular Thermoelectric Generator [J]. CASE STUDIES IN THERMAL ENGINEERING, 2024, 59: 104585. DOI: 10.1016/j.csite.2024.104585. [百度学术] [6]Li R, Gan Y H, Liang J L, et al. Experimental Study on the Thermal Management Performance of Battery with Ultra-Thin Vapor Chamber under Liquid Cooling Condition [J]. International Journal of Heat and Mass Transfer, 2025, 240: 126660. DOI: 10.1016/j.ijheatmasstransfer.2025.126660. [百度学术] [7]Wu H F, Zhang X J, Wang C, et al. Experimental Study on Aerogel Passive Thermal Control Method for Cylindrical Lithium-Ion Batteries at Low Temperature [J]. APPLIED THERMAL ENGINEERING, 2020, 169: 114946. DOI: 10.1016/j.applthermaleng.2020.114946. [百度学术] [8]刘松燕, 王卫良, 彭世亮, 等. 兼顾高/低温环境性能的动力电池热管理系统设计 [J]. 储能科学与技术, 2024, 13(07): 2181-2191. DOI: 10.19799/j.cnki.2095-4239.2024.0369. [百度学术] LIU S Y, WANG W L, PENG S L, et al. Design of a power battery thermal management system that takes into account both high/low temperature environmental performance[J]. Energy Storage Science and Technology, 2024 13(07): 2181-2191. DOI: 10.19799/j.cnki.2095-4239.2024.0369. [百度学术] [9]Luo M Y, Lin X M, Ling Z Y, et al. An Electric Conductive Wide-Temperature Flexible Phase Change Material for All-Climate Battery Thermal Management [J]. APPLIED THERMAL ENGINEERING, 2024, 256: 124051. DOI: 10.1016/j.applthermaleng.2024.124051. [百度学术] [10]Zhang C Q, Mao Y, Li K W, et al. High Power and Energy Density Graphene Phase Change Composite Materials for Efficient Thermal Management of Li-Ion Batteries [J]. Energy Storage Materials, 2025, 75: 104003. DOI: 10.1016/j.ensm.2025.104003. [百度学术] [11]Nazar M W, Iqbal N, Ali M, et al. Thermal Management of Li-Ion Battery by Using Active and Passive Cooling Method [J]. JOURNAL OF ENERGY STORAGE, 2023, 61: 106800. DOI: 10.1016/j.est.2023.106800. [百度学术] [12]Qin Y D, Xu Z C, Xiao S R, et al. Temperature Consistency-Oriented Rapid Heating Strategy Combining Pulsed Operation and External Thermal Management for Lithium-Ion Batteries [J]. APPLIED ENERGY, 2023, 335: 120659. DOI: 10.1016/j.apenergy.2023.120659. [百度学术] [13]Xu B, Xia F, Wang Y L, et al. A Battery Thermal Management Scheme Suited for Cold Regions Based on Pcm and Aerogel: Demonstration of Performance and Availability [J]. APPLIED THERMAL ENGINEERING, 2023, 227: 120378. DOI: 10.1016/j.applthermaleng.2023.120378. DOI: 10.1016/j.clay.2024.107278. [百度学术] [14]Li M, Yi H, Jia F, et al. Paraffin@Hectorite/Water Phase Change Fluid with Sustainable Suspension Stability and Efficient Heat Dissipation [J]. Applied Clay Science, 2024, 250: 107278. DOI: 10.1016/j.clay.2024.107278. [百度学术] [15]卜令帅, 屈治国, 徐洪涛, 等. 相变微胶囊悬浮液储能系统放冷特性实验研究 [J]. 化工学报, 2021, 72(08): 4064-4072. [百度学术] PU l S, QU Z G, XU H T, et al. Experimental study on the cooling characteristics of phase change microcapsule suspension energy storage system[J]. Journal of Chemical Industry, 2021, 72(08): 4064-4072. [百度学术] [16]Chen R, Ge X, Zhong Y, et al. Experimental Study of Phase Change Microcapsule-Based Liquid Cooling for Battery Thermal Management [J]. INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2023, 146: 106912. DOI: 10.1016/j.icheatmasstransfer.2023.106912. [百度学术] [17]Peter R J, Balasubramanian K R, Kumar K R. Comparative Study on the Thermal Performance of Microencapsulated Phase Change Material Slurry in Tortuous Geometry Microchannel Heat Sink [J]. APPLIED THERMAL ENGINEERING, 2023, 218: 119328. DOI: 10.1016/j.applthermaleng.2022.119328. [百度学术] [18]董彬, 薛永浩, 梁坤峰, 等. 相变微胶囊悬浮液喷淋换热特性实验研究 [J]. 化工学报, 2022, 73(07): 2971-2981. [百度学术] DONG B, XUE Y H, LIANG K F, et al. Experimental Study on the Spray Heat Exchange Characteristics of Phase Change Microcapsule Suspension Fluids[J]. Journal of Chemical Industry, 2022, 73(07): 2971-2981. [百度学术] [19]Zhang J J, Zhu D L, Liu Y, et al. Experimental Investigation of Spray Cooling Heat Transfer with Microcapsule Phase Change Suspension [J]. International Journal of Heat and Mass Transfer, 2024, 229:125720. DOI: 10.1016/j.ijheatmasstransfer.2024.125720. [百度学术] [20]Yao C Y, Yu X, Feng L, et al. Development of Microencapsulated Phase Change Material Slurry for Diamond Wire Sawing Silicon Wafer and Its Effect on Cutting Quality [J]. Journal of Manufacturing Processes, 2024, 127: 421-432. DOI: 10.1016/j.jmapro.2024.07.132. [百度学术] [21]Dutkowski K, Fiuk J J. Experimental Research of Viscosity of Microencapsulated Pcm Slurry at the Phase Change Temperature [J]. International Journal of Heat and Mass Transfer, 2019, 134: 1209-1217. DOI: 10.1016/j.ijheatmasstransfer.2019.02.036. [百度学术] [22]Hu Z, Peng Y, Lv Y, et al. Battery Thermal Management under All-Climate Conditions Based on Phase Change Materials and Heat Pipes: A Numerical Simulation Study [J]. Applied Thermal Engineering, 2025, 268: 125913. DOI: 10.1016/j.applthermaleng.2025.125913. [百度学术] [23]Bernardi D P, E.;Newman, J. A General Energy Balance for Battery Systems [J]. Journal of the Electrochemical Society, 1985, 132: 5-12. DOI: 10.1149/1.2113792. [百度学术] [24]薛超坦. 基于液冷的纯电动汽车锂电池热管理研究 [D], 吉林: 吉林大学, 2017. [百度学术] XUE C T. Research on lithium battery thermal management for pure electric vehicles based on liquid cooling[D]. Jilin:Jilin University, 2017. [百度学术] [25]Jiang Y, Lin X W, Xiao C F, et al. Advanced Battery Thermal Management: Synergistic Integration of Heat Pipes and Two-Phase Immersion Cooling for Lithium-Ion Batteries [J]. International Journal of Heat and Mass Transfer, 2025, 252: 127479. DOI: 10.1016/j.ijheatmasstransfer.2025.127479. [百度学术] [26]Lin W, Zhu M Y, Fan Y, et al. Low Temperature Lithium-Ion Batteries Electrolytes: Rational Design, Advancements, and Future Perspectives [J]. Journal of Alloys and Compounds, 2022, 905:164163. DOI: 10.1016/j.jallcom.2022.164163. [百度学术] |
| [1] | Ye CHEN, Jin LI, Ruilani ZHAO, Shaoyu ZHANG, Yuxi CHU, Kang YANG, Xiaoxue LIAO, Bo JIANG, Ping ZHUO. Comparative experimental study on thermal runaway propagation of battery modules under different states of charge [J]. Energy Storage Science and Technology, 2025, 14(9): 3402-3413. |
| [2] | Qifa GAO, Nan ZHANG, Zhaoli ZHANG, Yanxia DU, Yanping YUAN. Influence of copper foam on the heat transfer and temperature control characteristics of phase change materials under different force fields [J]. Energy Storage Science and Technology, 2025, 14(9): 3301-3310. |
| [3] | Yanping YUAN, Qifa GAO, Nan ZHANG, Qinrong SUN. Numerical analysis of thermal storage characteristics of gradient-porosity copper foam-enhanced phase change materials [J]. Energy Storage Science and Technology, 2025, 14(8): 3100-3109. |
| [4] | Bowen LI, Xiankui WEN, Qiang FAN, Tingyun GU, Zhengjun SHI, Xiaoyin ZHANG. Experimental study on heat dissipation through circulation in the hollow shaft of MW-class flywheel motor rotor [J]. Energy Storage Science and Technology, 2025, 14(8): 2925-2931. |
| [5] | Yiming LI, Jinghao YAN, Li'na XI, Xiaobing SUN, Minggao LIU, Jie LI, Xiaoqin SUN. Numerical simulation study on the thermal storage performance of eccentric tubular phase change thermal storage units filled with composite phase change materials/metal foam [J]. Energy Storage Science and Technology, 2025, 14(5): 1931-1942. |
| [6] | Zhiqiang LI, Yichun BA, Guangqiang SUN. Research on heat dissipation of cold plates with honeycomb and fork channels of lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1776-1783. |
| [7] | Bin YANG, Xiangjing YU, Yang ZHENG, Shixuan YANG, Qirong YANG, Daliang QIAO, Yang SUN, Youping LI. Numerical analysis of fin optimization for a shell-and-tube phase change energy storage heat exchanger [J]. Energy Storage Science and Technology, 2025, 14(4): 1394-1412. |
| [8] | Zhe HUANG, Zhiming YU, Zhaojin QING, Zhaoli ZHANG. Heat transfer characteristics of spherical thermal storage units based on PW/SEBS/EG composite phase change materials in a rotating fluid medium [J]. Energy Storage Science and Technology, 2025, 14(4): 1413-1423. |
| [9] | Yuehao CHEN, Sha CHEN, Huilan CHEN, Xiaoqin SUN, Yongqiang LUO. Simulation study on cooling performance of immersion liquid cooling systems for energy-storage battery packs [J]. Energy Storage Science and Technology, 2025, 14(2): 648-658. |
| [10] | Xin XIE, Xinjie XUE, Changying ZHAO. Topology-optimized heattransfer structure design for fast melting in phase change thermal energy storage units [J]. Energy Storage Science and Technology, 2025, 14(10): 4027-4036. |
| [11] | Fuxiang LYU, Xiaofeng LU, Hongfeng LI, Xiaolei ZHU. The research of the "dissipation-storage" integrated battery thermal management system [J]. Energy Storage Science and Technology, 2025, 14(10): 3677-3686. |
| [12] | Sizhe YUAN, Yuhao LIU, Changying ZHAO. Designing a titanium-based hydride hydrogen storage reactor and numerical simulation of the hydrogen absorption and desorption process [J]. Energy Storage Science and Technology, 2025, 14(10): 3955-3967. |
| [13] | Guohe CHEN, Peizhao LYU, Menghan LI, Zhonghao RAO. Research progress on thermal runaway propagation characteristics of lithium-ion batteries and its inhibiting strategies [J]. Energy Storage Science and Technology, 2024, 13(7): 2470-2482. |
| [14] | Songyan LIU, Weiliang WANG, Shiliang PENG, Junfu LYU. Thermal management system for power battery in high/low-temperature environments [J]. Energy Storage Science and Technology, 2024, 13(7): 2181-2191. |
| [15] | Ludi ZHANG, Guobing ZHOU. Simulated optimization of eccentricity and fin structure of a horizontal double-tube latent heat storage unit [J]. Energy Storage Science and Technology, 2024, 13(3): 1019-1029. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||