Energy Storage Science and Technology ›› 2013, Vol. 2 ›› Issue (5): 503-513.doi: 10.3969/j.issn.2095-4239.2013.05.009
• Expert lectures • Previous Articles Next Articles
ZHENG Jieyun, LI Hong
Received:
2013-08-05
Online:
2013-10-19
Published:
2013-10-19
CLC Number:
ZHENG Jieyun, LI Hong. Fundamental scientific aspects of lithium batteries (V)----Interfaces[J]. Energy Storage Science and Technology, 2013, 2(5): 503-513.
[1] Tarascon J,Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature ,2001,414:359-367. [2] Armand M,Tarascon J M. Building better batteries[J]. Nature ,2008,451(7179):652-657. [3] Zu C X,Li H. Thermodynamic analysis on energy densities of batteries[J]. Energy Environ. Sci .,2011(4):2614-2624. [4] Alper J. The battery:Not yet a terminal case[J]. Science ,2002,296(5571):1224-1226. [5] Goodenough J B,Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials ,2010,22(3):587-603. [6] Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews-Columbus ,2004,104(10):4303-4418. [7] Dey A N. Film formation on lithium anode in propylene carbonate[J]. Journal of the Electrochemical Society ,1970,117(8):C248. [8] Peled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems The solid electrolyte interphase model[J]. Journal of the Electrochemical Society ,1979,126(12):2047. [9] Peled E,Golodnitsky D,Ardel G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes[J]. Journal of the Electrochemical Society ,1997,144(8):L208-L210. [10] Aurbach D,Markovsky B,Levi M, et al . New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries[J]. Journal of Power Sources ,1999,81:95-111. [11] Aurbach D. Review of selected electrode Solution interactions which determine the performance of Li and Li ion batteries[J]. Journal of Power Sources ,2000,89(2):206-218. [12] Aurbach D,Zinigrad E,Cohen Y,e t al . A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions[J]. Solid State Ionics ,2002,148(3):405-416. [13] Aurbach D,Gamolsky K,Markovsky B, et al . On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries[J]. Electrochimica Acta ,2002,47(9):1423-1439. [14] Kim S-P,Duin A C T,Shenoy V B. Effect of electrolytes on the structure and evolution of the solid electrolyte interphase (SEI)in Li-ion batteries:A molecular dynamics study[J]. Journal of Power Sources ,2011,196(20):8590-8597. [15] Verma P,Maire P,Novák P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries[J]. Electrochimica Acta ,2010,55(22):6332-6341. [16] Li H,Huang X,Chen L. Direct imaging of the passivating film and microstructure of nanometer-scale SnO anodes in lithium rechargeable batteries[J]. Electrochemical and Solid-State Letters ,1998,1(6):241-243. [17] Hu J,Li H,Huang X, et al . Improve the electrochemical performances of Cr 2 O 3 anode for lithium ion batteries[J]. Solid State Ionics ,2006,177(26):2791-2799. [18] Wang Q,Li H,Chen L, et al . Investigation of lithium storage in bamboo-like CNTs by HRTEM[J]. Journal of the Electrochemical Society ,2003,150(9):A1281-A1286. [19] Hu J,Li H,Huang X. Electrochemical behavior and microstructure variation of hard carbon nano-spherules as anode material for Li-ion batteries[J]. Solid State Ionics ,2007,178(3):265-271. [20] Shu J(舒杰). 锂离子电池界面及负极材料相关问题研究[D]. Beijing:Institute of Physics,Chinese Academy of Sciences,2007. [21] Liu N,Li H,Wang Z, et al . Origin of solid electrolyte interphase on nanosized LiCoO 2 [J]. Electrochemical and Solid-State Letters ,2006,9(7):A328-A331. [22] Wang L P,Li H,Huang X J. Electrochemical properties and interfacial reactions of LiNi 0.5 Mn 1.5 O 4- σ nanorods[J]. Progress in Natural Science-Materials International ,2012,22(3):207-212. [23] Zhong K,Xia X,Zhang B, et al . MnO powder as anode active materials for lithium ion batteries[J]. Journal of Power Sources , 2010,195(10):3300-3308. [24] Ariyoshi K,Yamato R,Ohzuku T. Zero-strain insertion mechanism of Li [Li 1/3 Ti 5/3 ]O 4 for advanced lithium-ion (shuttlecock) batteries[J]. Electrochimica Acta ,2005,51(6):1125-1129. [25] Schwager F,Geronov Y,Muller R. Ellipsometer studies of surface layers on lithium[J]. Journal of the Electrochemical Society ,1985,132(2):285-289. [26] Li H,Mo Y,Pei N, et al . Surface-enhanced Raman scattering study on passivating films of Ag electrodes in lithium batteries[J]. The Journal of Physical Chemistry B ,2000,104(35):8477-8480. [27] Zeng Y,Li L,Li H, et al . TG-MS analysis on thermal decomposable components in the SEI film on Cr 2 O 3 powder anode in Li-ion batteries[J]. Ionics ,2009,15(1):91-96. [28] Andersson A M,Edstro?m K. Chemical composition and morphology of the elevated temperature SEI on graphite[J]. Journal of the Electrochemical Society ,2001,148(10):A1100. [29] Andersson A M,Abraham D P,Haasch R, et al . Surface characterization of electrodes from high power lithium-ion batteries[J]. Journal of the Electrochemical Society ,2002,149(10):A1358. [30] Jeong S-K,Inaba M,Iriyama Y, et al . AFM study of surface film formation on a composite graphite electrode in lithium-ion batteries[J]. Journal of Power Sources ,2003,(119-121):555-560. [31] Inaba M,Tomiyasu H,Tasaka A, et al . Atomic force microscopy study on the stability of a surface film formed on a graphite negative electrode at elevated temperatures[J]. Langmuir ,2004,20(4):1348-1355. [32] Lucas I T,Pollak E,Kostecki R. In situ AFM studies of SEI formation at a Sn electrode[J]. Electrochemistry Communications ,2009, 11(11):2157-2160. [33] Plodinec M,Loparic M,Monnier C A, et al . The nanomechanical signature of breast cancer[J]. Nat. Nanotechnol. ,2012,7(11): 757-765. [34] Zhang J,Wang R,Yang X, et al . Direct observation of inhomogeneous solid electrolyte interphase on MnO anode with atomic force microscopy and spectroscopy[J]. Nano Lett. ,2012,12(4):2153-2159. [35] Xu K,Cresce A von,Lee U. Differentiating contributions to"Ion Transfer"barrier from interphasial resistance and Li desolvation at electrolyte/graphite interface[J]. Langmuir ,2010,26(13):11538-11543. [36] Shi S,Lu P,Liu Z, et al . Direct calculation of Li-ion transport in the solid electrolyte interphase[J]. Journal of the American Chemical Society ,2012,134(37):15476-15487. [37] Shi S,Qi Y,Li H, et al . Defect thermodynamics and diffusion mechanisms in Li 2 CO 3 and implications for the solid electrolyte interphase in Li-ion batteries[J]. The Journal of Physical Chemistry C ,2013,113(17):8579-8593. [38] Liu N(柳娜). 锂离子电池正极材料的界面及改性研究[D]. Beijing:Institute of physics,Chinese Academy of Sciences,2006. [39] He Y,Yu X,Wang Y, et al . Alumina-coated patterned amorphous silicon as the anode for a lithium-ion battery with high coulombic efficiency[J]. Advanced Materials ,2011,23(42):4938-4941. [40] Martin L,Martinez H,Ulldemolins M, et al . Evolution of the Si electrode/electrolyte interface in lithium batteries characterized by XPS and AFM techniques: The influence of vinylene carbonate additive[J]. Solid State Ionics ,2012,215:36-44. [41] Etacheri V,Haik O,Goffer Y, et al . Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes[J]. Langmuir ,2012,28(1):965-976. [42] Lin Y M,Klavetter K C,Abel P R, et al . High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for Li-ion batteries[J]. Chem. Commun. ,2012,48(58):7268-7270. [43] Xu K,Zhang S,Jow T R. LiBOB as additive in LiPF 6 -Based lithium ion electrolytes[J]. Electrochemical and Solid-State Letters , 2005,8(7):A365-A368. [44] Zhang S,Xu K,Jow T. Enhanced performance of Li-ion cell with LiBF 4 -PC based electrolyte by addition of small amount of LiBOB[J]. Journal of Power Sources ,2006,156(2):629-633. |
[1] | Suting WENG, Zepeng LIU, Gaojing YANG, Simeng ZHANG, Xiao ZHANG, Qiu FANG, Yejing LI, Zhaoxiang WANG, Xuefeng WANG, Liquan CHEN. Cryogenic electron microscopy (cryo-EM) characterizing beam-sensitive materials in lithium metal batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 760-780. |
[2] | Siqi LYU, Na LI, Haosen CHEN, Shuqiang JIAO, Weili SONG. Progresses in visualization and quantitative analysis of the electrode process in rechargeable batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 795-817. |
[3] | Zhongmin REN, Bin WANG, Shuaishuai CHEN, Hua LI, Zhenlian CHEN, Deyu WANG. Mechanics-induced degradation on layer-structured cathodes and remedies to address it [J]. Energy Storage Science and Technology, 2022, 11(3): 948-956. |
[4] | Hanwen AN, Shengkai MO, Menglu LI, Jiajun WANG. Research progress of synchrotron radiation multimodal imaging technology in field of energy storage batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 834-851. |
[5] | Zhiwei ZHAO, Zhi YANG, Zhangquan PENG. Application of time-of-flight secondary ion mass spectrometry in lithium-based rechargeable batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 781-794. |
[6] | Zhao DU, Kang YANG, Gao SHU, Pan WEI, Xiaohu YANG. Experimental Study on the Heat Storage and Release of the Solid-Liquid Phase Change in Metal-Foam-Filled Tube [J]. Energy Storage Science and Technology, 2022, 11(2): 531-537. |
[7] | Jiahao YANG, Zhaoping SHI, Yibo WANG, Junjie GE, Changpeng LIU, Wei XING. In-situ/operando characterization techniques for oxygen evolution in acidic media [J]. Energy Storage Science and Technology, 2021, 10(6): 1877-1890. |
[8] | Dechao GUO, Yimin GUO, Qiwen ZHANG, Xiangyun CI, Fengrong HE. Preparation and characterization of solvent-free dry electrodes for lithium ion batteries [J]. Energy Storage Science and Technology, 2021, 10(4): 1311-1316. |
[9] | Chengzhi KE, Bensheng XIAO, Miao LI, Jingyu LU, Yang HE, Li ZHANG, Qiaobao ZHANG. Research progress in understanding of lithium storage behavior and reaction mechanism of electrode materials through in situ transmission electron microscopy [J]. Energy Storage Science and Technology, 2021, 10(4): 1219-1236. |
[10] | Bin LIU, Ziqiang HU, Kuining LI, Yi XIE, Jintao ZHENG. Experimental and simulation on battery thermal management based on a large flat heat pipe [J]. Energy Storage Science and Technology, 2021, 10(4): 1364-1373. |
[11] | Xinxin ZHU, Wei JIANG, Zhengwei WAN, Shu ZHAO, Zeheng LI, Liguang WANG, Wenbin NI, Min LING, Chengdu LIANG. Research progress in electrolyte and interfacial issues of solid lithium sulfur batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 848-862. |
[12] | Shangsen CHI, Yidong JIANG, Qingrong WANG, Ziwei YE, Kai YU, Jun MA, Jun JIN, Jun WANG, Chaoyang WANG, Zhaoyin WEN, Yonghong DENG. The liquid electrolyte modified interface between garnet-type solid-state electrolyte and lithium anode [J]. Energy Storage Science and Technology, 2021, 10(3): 914-924. |
[13] | Saisai ZHANG, Hailei ZHAO. Electrode/electrolyte interfaces in Li7La3Zr2O12 garnet-based solid-state lithium metal battery: Challenges and progress [J]. Energy Storage Science and Technology, 2021, 10(3): 863-871. |
[14] | Jingjing ZHANG, Xiaoling CUI, Dongni ZHAO, Li YANG, Jie WANG. Effects of concentrated electrolytes on the electrode /electrolyte interface [J]. Energy Storage Science and Technology, 2021, 10(1): 143-149. |
[15] | Yilong LIN, Min XIAO, Dongmei HAN, Shuanjin WANG, Yuezhong MENG. Research progress in formation technique for LIBs [J]. Energy Storage Science and Technology, 2021, 10(1): 50-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||