Energy Storage Science and Technology ›› 2016, Vol. 5 ›› Issue (3): 249-257.doi: 10.3969/j.issn.2095-4239.2016.03.001
Previous Articles Next Articles
ZHANG Sanpei,WEN Zhaoyin
Received:
2016-04-02
Revised:
2016-04-15
Online:
2016-05-01
Published:
2016-05-01
ZHANG Sanpei,WEN Zhaoyin. Review on sodium-air batteries[J]. Energy Storage Science and Technology, 2016, 5(3): 249-257.
[1] GRANDE L,PAILLARD E,HASSOUN J,et al. The lithium/air battery:Still an emerging system or a practical reality? [J]. Adv. Mater.,2015,27:784-800. [2] RUI K,WEN Z,LU Y,et al. One-step solvothermal synthesis of nanostructured manganese fluoride as an anode for rechargeable lithium-ion batteries and insights into the conversion mechanism[J]. Advanced Energy Materials,2015,5:doi: 10.1002/aenm.201401716. [3] REDDY M,SUBBARAO G,CHOWDARI B. Metal oxides and oxysalts as anode materials for Li ion batteries[J]. Chemical Reviews,2013,113:5364-5457. [4] LU J,LI L,PARK J B,et al. Aprotic and aqueous Li-O2 batteries[J]. Chemical Reviews,2014,114:5611-5640. [5] WEN Z,SHEN C,LU Y. Air electrode for the lithium-air batteries: Materials and structure designs[J]. Chempluschem,2015,80:270-287. [6] 胡英瑛,温兆银,芮琨,等. 钠电池的研究与开发现状[J]. 储能科学与技术,2013,2(2):81-90. HU Yingying,WEN Zhaoyin,RUI Kun,et al. State-of-the-art research and development status of sodium batteries[J]. Energy Storage Science and Technology,2013,2(2):81-90. [7] WEN Z,HU Y,WU X,et al. Main challenges for high performance NAS battery:Materials and interfaces[J]. Advanced Functional Materials,2013,23:1005-1018. [8] 张三佩,温兆银,靳俊,等. 二次钠-空气电池的研究进展[J]. 电化学,2015,21:425-432. ZHANG S P,WEN Z Y,JIN J,et al. The research progress of secondary sodium/air batteries[J]. Journal of Electrochemistry,2015,21:425-432. [9] DAS S K,LAU S,ARCHER L A. Sodium-oxygen batteries:A new class of metal-air batteries[J]. Journal of Materials Chemistry A,2014,2:12623-12629. [10] HARTMANN P,BENDER C L,VRACAR M,et al. A rechargeable room-temperature sodium superoxide (NaO2) battery[J]. Nat. Mater.,2013,12:228-232. [11] BENDER C L,HARTMANN P,VRACAR M,et al. On the thermodynamics,the role of the carbon cathode,and the cycle life of the sodium superoxide (NaO2) battery[J]. Advanced Energy Materials,2014,4:3412-3420. [12] HARTMANN P,GRUEBLl D,SOMMER H,et al. Pressure dynamics in metal-oxygen (metal-air) batteries:A case study on sodium superoxide cells[J]. J. Phys. Chem. C,2014,118:1461-1471. [13] ZHAO N,LI C,GUO X. Long-life Na-O2 batteries with high energy efficiency enabled by electrochemically splitting NaO2 at a low overpotential[J]. Physical Chemistry Chemical Physics,2014,16:15646-15652. [14] KANG S,MO Y,ONG S P,at al. Nanoscale stabilization of sodium oxides:Implications for Na-O2 batteries[J]. Nano. Letters,2014,14:1016-1020. [15] HARTMANN P,BENDER C L,SANN J,et al. A comprehensive study on the cell chemistry of the sodium superoxide (NaO2) battery [J]. Physical Chemistry Chemical Physics,2013,15:11661-11672. [16] BENDER C L,BARTULI W,SCHWAG M G,et al. Toward better sodium-oxygen batteries:A study on the performance of engineered oxygen electrodes based on carbon nanotubes[J]. Energy Technology,2015,3:242-248. [17] YANG S,SIEGEL D J. Intrinsic conductivity in sodium-air battery discharge phases:Sodium superoxide vs sodium seroxide[J]. Chem. Mater.,2015,27:3852-3860. [18] LU J,LEE Y J,LUO X,et al. A lithium-oxygen battery based on lithium superoxide[J]. Nature,2016,doi:10.1038/nature 16484. [19] XIA C,BLACK R,FERNANDES R,et al. The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries[J]. Lancet,1989,2015,1:1338-9. [20] SUN Q,YANG Y,FU Z W. Electrochemical properties of room temperature sodium-air batteries with non-aqueous electrolyte[J]. Electrochem. Commun.,2012,16:22-25. [21] FREUNBERGER S A,CHEN Y H,PENG Z Q,et al. Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes[J]. J. Am. Chem. Soc.,2011,133:8040-8047. [22] KIM J,LIM H D,GWON H,et al. Sodium-oxygen batteries with alkyl-carbonate and ether based electrolytes[J]. Physical Chemistry Chemical Physics,2013,15:3623-3629. [23] KWAK W J,CHEN Z,YOON C S,et al. Nanoconfinement of low-conductivity products in rechargeable sodium-air batteries[J]. Nano. Energy,2015,12:123-130. [24] ZHANG S,WEN Z,RUI K,et al. Graphene nanosheets loaded with Pt nanoparticles with enhanced electrochemical performance for sodium-oxygen batteries[J]. Journal of Materials Chemistry A,2015,3:2568-2571. [25] PAN Z L,CHEN Y,LI F J,et al. High capacity Na-O2 batteries with carbon nanotube paper as binder-free air cathode[J]. J. Power Sources,2014,251:466-469. [26] LUNTZ A C,MCCLOSKEY B D. Nonaqueous Li-air batteries:A status report[J]. Chemical Reviews,2014,114:11721-11750. [27] LIM H D,SONG H,KIM J,et al. Superior rechargeability and efficiency of lithium-oxygen batteries:Hierarchical air electrode architecture combined with a soluble catalyst[J]. Angewandte Chemie International Edition,2014,53:3926-3931. [28] YIN W W,YUE J L, [29] FU Z,YIN W W,SHADIKE Z,et al. A long-life Na-air battery based on soluble NaI catalyst[J]. Chem. Commun.,2014,doi:10.1039/C4CC08439J. [30] CHEN Y,FREUNBERGER S A,PENG Z,et al. Charging a Li-O2 battery using a redox mediator[J]. Nature Chemistry,2013,5:489-494. [31] ZHANG S,CHOWDARI B,WEN Z,et al. Constructing highly oriented configuration by few-layer MoS2:Toward high-performance lithium-ion batteries and hydrogen evolution reactions[J]. ACS Nano,2015,9:12464-12472. [32] AMBROSI A,CHUA C K,BONANNI A,et al. Electrochemistry of graphene and related materials[J]. Chemical Reviews,2014,114:7150-7188. [33] LIU W,SUN Q,YANG Y,et al. An enhanced electrochemical performance of a sodium-air battery with graphene nanosheets as air electrode catalysts[J]. Chem. Commun.,2013,49:1951-1953. [34] LI Y,YADEGARI H,LI X,et al. Superior catalytic activity of nitrogen-doped graphene cathodes for high energy capacity sodium-air batteries[J]. Chem. Commun.,2013,49:11731-11733. [35] ZHANG S,WEN Z,JIN J,et al. Controlling uniform deposition of discharge products in nanoscale for rechargeable Na-O2 batteries[J]. Journal of Materials Chemistry A,2016. [36] SUN Q,YADEGARI H,BANIS M N,et al. Self-stacked nitrogen-doped carbon nanotubes as long-life air electrode for sodium-air batteries:Elucidating the evolution of discharge product morphology[J]. Nano Energy,2015,12:698-708. [37] HU Y,HAN X,ZHAO Q,et al. Porous perovskite calcium-manganese oxide microspheres as an efficient catalyst for rechargeable sodium-oxygen batteries[J]. Journal of Materials Chemistry A,2015,3:3320-3324. [38] MCCLOSKEY B D,SCHEFFLER R,SPEIDEL A,et al. On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries[J]. J. Am. Chem. Soc.,2011,33:18038-18041. |
[1] | Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes [J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. |
[2] | Zhiwei ZHAO, Zhi YANG, Zhangquan PENG. Application of time-of-flight secondary ion mass spectrometry in lithium-based rechargeable batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 781-794. |
[3] | Wenting JIN, Mansheng LIAO, Ji HUANG, Zidong WEI. The technological trend of high energy density Li-ion batteries for vehicles [J]. Energy Storage Science and Technology, 2022, 11(1): 350-358. |
[4] | Yuexia LI, Quanbing LIU. Application of MXene-based nanomaterials in electrocatalysis for oxygen reduction reaction [J]. Energy Storage Science and Technology, 2021, 10(6): 1918-1930. |
[5] | Mengdie YAN, Hui LI, Min LING, Huilin PAN, Qiang ZHANG. Brief review of progress in lithium-sulfur batteries based on dissolution-deposition reactions [J]. Energy Storage Science and Technology, 2020, 9(6): 1606-1613. |
[6] |
ZOU Jian, WANG Bojun, YANG Jiachao, NIU Xiaobin, WANG Liping.
Electrochemical performance of β-Li0.3V2O5 as a lithium-ion battery cathode material
[J]. Energy Storage Science and Technology, 2020, 9(2): 353-360.
|
[7] | ZHANG Yonglong, XIA Huiling, LIN Jiu, CHEN Shaojie, XU Xiaoxiong. Brief analysis the safety of solid-state lithium ion batteries [J]. Energy Storage Science and Technology, 2018, 7(6): 994-1002. |
[8] | CAO Yong, YAN Changqing, WANG Yifei, LI Daocong, LIN Shaoyong, LIANG Dayu, DAI Beibei, HU Panpan, BIAN Lin, YANG Xulai, XU Xingwu. The technical route exploration of lithium ion battery with high safety and high energy density [J]. Energy Storage Science and Technology, 2018, 7(3): 384-393. |
[9] | YANG Xulai, CHEN Houmei, GAO Er’ping. Project “development and application of lithium ion batteries with high specific energy density”#br# [J]. Energy Storage Science and Technology, 2017, 6(5): 1145-1147. |
[10] | XIA Dingguo. Project “ Key technology and basic science problem reach for high energy density lithium batteries” [J]. Energy Storage Science and Technology, 2017, 6(1): 165-168. |
[11] | LI Hong. Project “High energy density lithium batteries for long range EV” [J]. Energy Storage Science and Technology, 2016, 5(6): 915-918. |
[12] | XIA Yonggao, LIU Zhaoping. Research progress on the Li-excess Mn-based cathode materials with high capacity for lithium-ion battery [J]. Energy Storage Science and Technology, 2016, 5(3): 384-387. |
[13] | CAS Research Group on High Energy Density Lithium Batteries for EV. Progress on high energy density lithium batteries by CAS battery research group [J]. Energy Storage Science and Technology, 2016, 5(2): 172-176. |
[14] | CAS Research Group on High Energy Density Lithium Batteries for EV. Progress on high energy density lithium batteries by CAS battery research group [J]. Energy Storage Science and Technology, 2016, 5(2): 177-180. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||