Energy Storage Science and Technology ›› 2013, Vol. 2 ›› Issue (6): 620-635.doi: 10.3969/j.issn.2095-4239.2013.06.010
• Expert lectures • Previous Articles Next Articles
ZHENG Hao, GAO Jian, WANG Shaofei, LI Hong
Online:
2013-12-19
Published:
2013-12-19
CLC Number:
ZHENG Hao, GAO Jian, WANG Shaofei, LI Hong. Fundamental scientific aspects of lithium batteries (VI)--Ionic transport in solids[J]. Energy Storage Science and Technology, 2013, 2(6): 620-635.
[1] Maier J. Physical Chemistry of Ionic Materials:Ions and Electrons in Solids[M]. New Jersey:John Wiley & Sons,2004. [2] Agrawal R,Gupta R. Superionic solid:Composite electrolyte phase An overview[J]. Journal of Materials Science ,1999,34(6):1131-1162. [3] Wang J C,Gaffari M,Choi S. Ionic-conduction in beta-alumina- potential-energy curves and conduction mechanism[J]. Journal of Chemical Physics ,1975,63(2):772-778. [4] Van D V A,Ceder G. Lithium diffusion in layered Li x CoO 2 [J]. Electrochemical and Solid State Letters ,2000,3(7):301-304. [5] Wolf M L. Observation of solitary-wave conduction in a molecular Dynamics simulation of the superionic conductor Li 3 N[J]. Journal of Physics C : Solid State Physics ,1984,17(10):L285-L288. [6] Ihara S,Suzuki K. Molecular-dynamics study of Li 3 N[J]. Physics Letters A ,1985,110(5):265-268. [7] Shi S Q,Lu P,Liu Z Y, et al . Direct calculation of Li-ion transport in the solid electrolyte interphase[J]. Journal of the American Chemical Society ,2012,134(37):15476-15487. [8] Shi S Q,Qi Y,Li H, et al . Defect thermodynamics and diffusion mechanisms in Li 2 CO 3 and implications for the solid electrolyte interphase in Li-ion batteries[J]. Journal of Physical Chemistry C , 2013,117(17):8579-8593. [9] Park M,Zhang X C,Chung M, et al . A review of conduction phenomena in Li-ion batteries[J]. Journal of Power Sources ,2010,195(24):7904-7929. [10] Mehrer H. Diffusion in Solids:Fundamentals, Methods, Materials, Diffusion-Controlled Processes[M]. Berlin:Springer Press,2010. [11] Mclean D. Grain Boundaries in Metals[M]. London:Oxford University Press,1957. [12] Heitjans P,Indris S. Diffusion and ionic conduction in nanocrystalline ceramics[J]. Journal of Physics-Condensed Matter ,2003,15(30):R1257-R1289. [13] Barsoukov A E,Macdonald J R. Impedance Spectroscopy:Theory, Experiment, and Applications[M]. New Jersey:John Wiley & Sons,2005. [14] Dudney N J. Effect of interfacial space-charge polarization on the ionic-conductivity of composite electrolytes[J]. Journal of the American Ceramic Society ,1985,68(10):538-545. [15] UvarovV N F,Isupov V P,Sharma V, et al . Effect of morphology and particle-size on the ionic conductivities of composite solid electrolytes[J]. Solid State Ionics ,1992,51(1-2):41-52. [16] Liang C C. Conduction characteristics of lithium iodide aluminum oxide solid electrolytes[J]. Journal of the Electrochemical Society ,1973,120(10):1289-1292. [17] Bunde A,Dieterich W,Roman E. Dispersed ionic conductors and percolation theory[J]. Physical Review Letters ,1985,55(1):5-8. [18] Jow T,Wagner J B. The effect of dispersed alumina particles on the electrical conductivity of cuprous chloride[J]. Journal of the Electrochemical Society ,1979,126(11):1963-1972. [19] Sato H,Kikuchi R. Cation diffusion and conductivity in solid electrolytes.I[J]. Journal of Chemical Physics ,1971,55(2):677-702. [20] Sato H. Theoretical background for the mixed alkali effect[J]. Solid State Ionics ,1990,40-41(2):725-733. [21] Sato H,Ishikawa T,Funke K. Frequency-dependence of ionic- conductivity in interacting lattice gas systems[J]. Solid State Ionics ,1992,53-56:907-923. [22] Sato H,Datta A. Frequency-dependence of ionic-conductivity in lattice-gas models[J]. Solid State Ionics ,1994,72:19-28. [23] Sato H,Datta A,Ishikawa T. Kinetics of relaxation process of hopping ionic conduction in lattice gas models[J]. Solid State Ionics ,1996,86-88:1319-1323. [24] Funke K. Jump relaxation in solid electrolytes[J]. Progress in Solid State Chemistry ,1993,22(2):111-195. [25] Ngai K L,Jain H. Conductivity relaxation and spin-lattice relaxation in lithium and mixed alkali borate glasses Activation enthalpies, anomalous isotope-mass effect and mixed alkali effect[J]. Solid State Ionics ,1986,18-19:362-367. [26] Cohen M H,Turnbull D. Molecular transport in liquids and glasses[J]. Journal of Chemical Physics ,1959,31(5):1164-1169. [27] Gibbs J H,Dimarzio E A. Nature of the glass transition and the glassy state[J]. Journal of Chemical Physics ,1958,28(3):373-383. [28] Kamaya N,Homma K,Yamakawa Y, et al . A lithium superionic conductor[J]. Nat. Mater. ,2011,10(9):682-686. [29] Wagner C. Equations for transport in solid oxides and sulfides of transition metals[J]. Progress in Solid State Chemistry ,1975,10:3-16. [30] Lee D K,Yoo H I. Electron-ion interference and onsager reciprocity in mixed ionic-electronic transport in TiO 2 [J]. Physical Review Letters ,2006,97(25):255901-255904. [31] Ammundsen B,Rozi R J,Islam M S. Atomistic simulation studies of lithium and proton insertion in spinel lithium manganates[J]. The Journal of Physical Chemistry B ,1997,101(41):8156-8163. [32] Morgan D,Van D V A,Ceder G. Li conductivity in Li x MPO 4 (M= Mn,Fe,Co,Ni)olivine materials[J]. Electrochemical and Solid-State Letters ,2004,7(2):A30-A32. [33] Ouyang C,Shi S,Wang Z, et al . First-principles study of Li-ion diffusion in LiFePO 4 [J]. Physical Review B ,2004,69(10):104303-104307. [34] Van D V A,Ceder G. Lithium diffusion mechanisms in layered intercalation compounds[J]. Journal of Power Sources ,2001,97:529-531. [35] Koyama Y,Tanaka I,Adachi H, et al . First principles calculations of formation energies and electronic structures of defects in oxygen-deficient LiMn 2 O 4 [J]. Journal of the Electrochemical Society ,2003,150(1):A63-A67. [36] Suzuki K,Oumi Y,Takami S, et al . Structural properties of Li x Mn 2 O 4 as investigated by molecular dynamics and density functional theory[J]. Japanese Journal of Applied Physics ,2000,39(7B):4318. [37] Wolverton C,Zunger A. Cation and vacancy ordering in Li x CoO 2 [J]. Physical Review B ,1998,57(4):2242. [38] Goodenough J B. Design considerations[J]. Solid State Ionics ,1994,69(3):184-198. [39] Ouyang X,Lei M,Shi S, et al . First-principles studies on surface electronic structure and stability of LiFePO 4 [J]. Journal of Alloys and Compounds ,2009,476(1):462-465. [40] Maxisch T,Zhou F,Ceder G. An initio study of the migration of small polarons in olivine Li x FePO 4 and their association with lithium ions and vacancies[J]. Physical Review B ,2006,73(10):104301. [41] Sun Y,Lu X,Xiao R, et al . Kinetically controlled lithium-staging in delithiated LiFePO 4 driven by the Fe center mediated interlayer Li-Li interactions[J]. Chemistry of Materials ,2012,24(24):4693-4703. [42] Dokko K,Mohamedi M,Fujita Y, et al . Kinetic characterization of single particles of LiCoO 2 by AC impedance and potential step methods[J]. Journal of the Electrochemical Society ,2001,148(5):A422-A426. [43] Barker J,Pynenburg R,Koksbang R, et al . An electrochemical investigation into the lithium insertion properties of Li x CoO 2 [J]. Electrochimica Acta ,1996,41(15):2481-2488. [44] Levasseur S,Ménétrier M,Delmas C. On the dual effect of Mg doping in LiCoO 2 and Li 1+ δ CoO 2 :Structural, electronic properties, and 7 Li MAS NMR studies[J]. Chemistry of Materials ,2002,14(8):3584-3590. [45] Marzec J,Świerczek K,Przewoźnik J, et al . Conduction mechanism in operating a LiMn 2 O 4 cathode[J]. Solid State Ionics ,2002,146(3):225-237. [46] Molenda J,KuczaW. Transport properties of LiMn 2 O 4 [J]. Solid State Ionics ,1999,117(1):41-46. [47] Saidi M,Barker J,Koksbang R. Thermodynamic and kinetic investigation of lithium insertion in the Li 1- x Mn 2 O 4 spinel phase[J]. Journal of Solid State Chemistry ,1996,122(1):195-199. [48] Cao F,Prakash J. A comparative electrochemical study of LiMn 2 O 4 spinel thin-film and porous laminate[J]. Electrochimica Acta ,2002,47(10):1607-1613. [49] Shi S,Liu L,Ouyang C, et al . Enhancement of electronic conductivity of LiFePO 4 by Cr doping and its identification by first-principles calculations[J]. Physical Review B ,2003,68(19):195108. [50] Xu Y N,Chung SY,Bloking J T, et al . Electronic structure and electrical conductivity of undoped LiFePO 4 [J]. Electrochemical and Solid-State Letters ,2004,7(6):A131-A134. [51] Prosini P P,Lisi M,Zane D, et al . Determination of the chemical diffusion coefficient of lithium in LiFePO 4 [J]. Solid State Ionics ,2002,148(1-2):45-51. [52] Wang C,Hong J. Ionic/electronic conducting characteristics of LiFePO 4 cathode materials the determining factors for high rate performance[J]. Electrochemical and Solid-State Letters ,2007,10(3):A65-A69. [53] Ma J,Wang C,Wroblewski S. Kinetic characteristics of mixed conductive electrodes for lithium ion batteries[J]. Journal of Power Sources ,2007,164(2):849-856. [54] Wu Y,Rahm E,Holze R. Carbon anode materials for lithium ion batteries[J]. Journal of Power Sources ,2003,114(2):228-236. [55] Noel M,Suryanarayanan V. Role of carbon host lattices in Li-ion intercalation/de-intercalation processes[J]. Journal of Power Sources ,2002,111(2):193-209. [56] Zhang S,Xu K,Jow T. Low temperature performance of graphite electrode in Li-ion cells[J]. Electrochimica Acta ,2002,48(3):241-246. [57] Funabiki A,Inaba M,Ogumi Z, et al . Impedance study on the electrochemical lithium intercalation into natural graphite powder[J]. Journal of the Electrochemical Society ,1998,145(1):172-178. [58] Tang X C,Pan C Y,He L P, et al . A novel technique based on the ratio of potentio-charge capacity to galvano-charge capacity(RPG)for determination of the diffusion coefficient of intercalary species within insertion-host materials:Theories and experiments[J]. Electrochimica Acta ,2004,49(19):3113-3119. [59] Yang H,Bang H J,Prakash J. Evaluation of electrochemical interface area and lithium diffusion coefficient for a composite graphite anode[J]. Journal of the Electrochemical Society ,2004,151(8):A1247-A1250. [60] Wang Q,Li H,Huang X, et al . Determination of chemical diffusion coefficient of lithium ion in graphitized mesocarbon microbeads with potential relaxation technique[J]. Journal of the Electrochemical Society ,2001,148(7):A737-A741. [61] Levi M,Markevich E,Aurbach D. The effect of slow interfacial kinetics on the chronoamperometric response of composite lithiated graphite electrodes and on the calculation of the chemical diffusion coefficient of Li ions in graphite[J]. The Journal of Physical Chemistry B ,2005,109(15):7420-7427. [62] Nuli Y,Yang J,Jiang Z. Intercalation of lithium ions into bulk and powder highly oriented pyrolytic graphite[J]. Journal of Physics and Chemistry of Solids ,2006,67(4):882-886. [63] Flandrois S,Simon B. Carbon materials for lithium-ion rechargeable batteries[J]. Carbon ,1999,37(2):165-180. [64] Dahn J. Phase diagram of Li x C 6 [J]. Physical Review B ,1991,44(17):9170-9177. [65] Levi M,Aurbach D. Diffusion coefficients of lithium ions during intercalation into graphite derived from the simultaneous measurements and modeling of electrochemical impedance and potentiostatic intermittent titration characteristics of thin graphite electrodes[J]. The Journal of Physical Chemistry B ,1997,101(23):4641-4647. [66] Zhang S S. A review on electrolyte additives for lithium-ion batteries[J]. Journal of Power Sources ,2006,162(2):1379-1394. [67] Abe K,Miyoshi,Hattori T, et al . Functional electrolytes:Synergetic effect of electrolyte additives for lithium-ion battery[J]. Journal of Power Sources ,2008,184(2):449-455. [68] Otah,Sato T, Suzuki H, et al . TPD-GC/MS analysis of the solid electrolyte interface(SEI) on a graphite anode in the propylene carbonate/ethylene sulfite electrolyte system for lithium batteries[J]. Journal of Power Sources ,2001,97(1):7-13. [69] Aurbach D,Ein-eli Y,Markovsky B, et al . The Study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries II. Graphite electrodes[J]. Journal of the Electrochemical Society ,1995,142(9):2882-2890. [70] Peled E,Golodnitsky D,Ardel G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes[J]. Journal of the Electrochemical Society ,1997,144(8):L208-L210. [71] Zaghib K,Simoneau M,Armand M, et al . Electrochemical study of Li 4 Ti 5 O 12 as negative electrode for Li-ion polymer rechargeable batteries[J]. Journal of Power Sources ,1999,81:300-305. [72] Kasavajjula U,Wang C,Appleby A J. Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells[J]. Journal of Power Sources ,2007,163(2):1003-1039. [73] Li H,Huang X J,Chen L Q, et al . The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature[J]. Solid State Ionics ,2000,135(1-4):181-191. [74] Sun J,Tang K,Yu X, et al . Overpotential and electrochemical impedance analysis on Cr 2 O 3 thin film and powder electrode in rechargeable lithium batteries[J]. Solid State Ionics ,2008,179(40):2390-2395. [75] Akridge J R,Balkanski M. Solid State Microbatteries[M]. New York:Plenum Publishing Corporation,1988. [76] Wakihara M. Recent developments in lithium ion batteries[J]. Materials Science and Engineering : Reports ,2001,33(4):109-134. [77] Zaghib K,Charest P,Guerfi A, et al . Safe Li-ion polymer batteries for HEV applications[J]. Journal of Power Sources ,2004,134(1):124-129. [78] Knauth P. Ionic conductor composites:Theory and materials[J]. Journal of Electroceramics ,2000,5(2):111-125. [79] Hull S. Superionics:Crystal structures and conduction processes[J]. Reports on Progress in Physics ,2004,67(7):1233-1300. [80] Armand M,Tarascon J M. Building better batteries[J]. Nature ,2008,451:652-657. [81] Quartarone E,Mustarelli P. Electrolytes for solid-state lithium rechargeable batteries:Recent advances and perspectives[J]. Chemical Society Review ,2011,40(5):2525-2540. [82] Wanger C. The theory of the warm-up process[J]. J. Phys. Chem. B ,1933:21-25. [83] Li H,Shi L,Lu W, et al . Studies on capacity loss and capacity fading of nanosized SnSb alloy anode for Li-ion batteries[J]. Journal of the Electrochemical Society ,2001,148(8):A915-A922. [84] Li H,Shi L,Wang Q, et al . Nano-alloy anode for lithium ion batteries[J]. Solid State Ionics ,2002,148(3):247-258. [85] Liu N,Li H,Wang Z, et al . Origin of solid electrolyte interphase on nanosized LiCoO 2 [J]. Electrochemical and Solid-State Letters ,2006,9(7):A328-A331. [86] Maier J. Nanoionics:Ion transport and electrochemical storage in confined systems[J]. Nat. Mater. ,2005,4(11):805-815. [87] Aric A S,Bruce P,Scrosati B, et al . Nanostructured materials for advanced energy conversion and storage devices[J]. Nat. Mater. ,2005,4(5):366-377. [88] Gibot P,Casas-cabanas M,Laffont L, et al . Room-temperature single-phase Li insertion/extraction in nanoscale Li x FePO 4 [J]. Nat. Mater. ,2008,7(9):741-747. |
[1] | Haitao LI, Lingli KONG, Xin ZHANG, Chuanjun YU, Jiwei WANG, Lin XU. The effects of N/P design on the performances of Ni-rich NCM/Gr lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2040-2045. |
[2] | Wei ZENG, Junjie XIONG, Jianlin LI, Suliang MA, Yiwen WU. Optimal configuration of energy storage power station in multi-energy system based on weight adaptive whale optimization algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2241-2249. |
[3] | Zhen YAO, Qi ZHANG, Rui WANG, Qinghua LIU, Baoguo WANG, Ping MIAO. Application of biomass derived carbon materials in all vanadium flow battery electrodes [J]. Energy Storage Science and Technology, 2022, 11(7): 2083-2091. |
[4] | Yu SHI, Zhong ZHANG, Jingying YANG, Wei QIAN, Hao LI, Xiang ZHAO, Xintong YANG. Opportunity cost modelling and market strategy of energy storage participating in the AGC market [J]. Energy Storage Science and Technology, 2022, 11(7): 2366-2373. |
[5] | Changyang LIU, Liuzhen BIAN, Jianquan GAO, Jihua PENG, Jun PENG, Shengli AN. Electrochemical performance of La0.7Sr0.3Fe0.9Ni0.1O3-δ symmetric electrode for solid oxide fuel cell with CO as fuel [J]. Energy Storage Science and Technology, 2022, 11(7): 2059-2065. |
[6] | Long CHEN, Quan XIA, Yi REN, Gaoping CAO, Jingyi QIU, Hao ZHANG. Research prospect on reliability of Li-ion battery packs under coupling of multiple physical fields [J]. Energy Storage Science and Technology, 2022, 11(7): 2316-2323. |
[7] | Jianmin HAN, Feiyu XUE, Shuangyin LIANG, Tianshu QIAO. Hybrid energy storage system assisted frequency modulation simulation of the coal-fired unit under fuzzy control optimization [J]. Energy Storage Science and Technology, 2022, 11(7): 2188-2196. |
[8] | Xianxi LIU, Anliang SUN, Chuan TIAN. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate [J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273. |
[9] | Peng HUANG, Zhigen NIE, Zheng CHEN, Xing SHU, Shiquan SHEN, Jipeng YANG, Jiangwei SHEN. Capacity prediction of lithium battery based on optimized Elman neural network [J]. Energy Storage Science and Technology, 2022, 11(7): 2282-2294. |
[10] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[11] | Guohui FENG, Tianyu WANG, Gang WANG. A simulation analysis on the effect of encapsulation mode on the heat storage and release performance of phase change water tank [J]. Energy Storage Science and Technology, 2022, 11(7): 2161-2176. |
[12] | Qingwei ZHU, Xiaoli YU, Qichao WU, Yidan XU, Fenfang CHEN, Rui HUANG. Semi-empirical degradation model of lithium-ion battery with high energy density [J]. Energy Storage Science and Technology, 2022, 11(7): 2324-2331. |
[13] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[14] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[15] | Fengrong HE, Qiwen ZHANG, Dechao GUO, Yimin GUO, Xiaodong GUO. Influences of electrode structure on the electrical properties of (NMC+AC)/HC hybrid capacitor [J]. Energy Storage Science and Technology, 2022, 11(7): 2051-2058. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||