[1] 戴兴建, 邓占峰, 刘刚, 等. 大容量先进飞轮储能电源技术发展状况[J]. 电工技术学报, 2011, 26(7):133-140. DAI Xingjian, DENG Zhanfeng, LIU Gang, et al. Review on advanced flywheel energy storage system with large scale[J]. Transactions of China Electrotechnical Society, 2011, 26(7):133-140.
[2] 戴兴建, 张小章, 姜新建, 等. 清华大学飞轮储能技术研究概况[J]. 储能科学与技术, 2012, 1(1):64-68. DAI Xingjian, ZHANG Xiaozhang, JIANG Xinjian, et al. Flywheel energy storage technology in Tsinghua University[J]. Energy Storage Science and Technology, 2012, 1(1):64-68.
[3] 王传东. 飞轮电池发展研究[J]. 电源技术, 2014, 38(7):1402-1403. WANG Chuandong. Development of flywheel battery[J]. Power Technology, 2014, 38(7):1402-1403.
[4] 陈亚爱, 甘时霖, 周京华, 等. 飞轮储能技术[J]. 电源技术, 2016, 40(8):1718-1721. CHEN Yaai, GAN Shilin, ZHOU Jinghua. Energy storage technology of flywheel[J]. Power Technology, 2016, 40(8):1718-1721.
[5] 刘付成, 李结冻, 李延宝, 等. 磁悬浮储能飞轮技术研究及应用示范[J]. 上海节能, 2017(2):80-84. LIU Fucheng, LI Jiedong, LI Yanbao, et al. Research and application demonstration of maglev energy storage flywheel technology[J]. Shanghai Energy Conservation, 2017(2):80-84.
[6] 毕文俊. 基于飞轮储能的地铁再生制动能量利用研究[D]. 成都:西南交通大学, 2016. BI Wenjun. The study of subway braking energy utilization based on flywheel energy storage[D]. Chengdu:Southwest Jiaotong University, 2016.
[7] 李树胜, 付永领, 刘平, 等. 磁悬浮飞轮储能UPS系统集成应用及充放电控制方法研究[J]. 中国电机工程学报, 2017, 37(1):170-176. LI Shusheng, FU Yongling, LIU ping, et al. Research on integrated application and charging-discharging control method for the magnetically suspended flywheel storage-based UPS system[J]. Proceedings of the CSEE, 2017, 37(1):170-176.
[8] 张超平, 戴兴建, 苏安平, 等. 石油钻机动力系统飞轮储能调峰试验研究[J]. 石油机械, 2013, 41(5):3-6. ZHAO Chaoping, DAI Xingjian, SU Anping, et al. Experimental study of flywheel energy storage and peak regulation of rig power system[J]. China Peroleum Machinery, 2013, 41(5):3-6.
[9] 魏鲲鹏, 汪勇, 戴兴建. 飞轮储能系统在风力发电中应用研究进展[J]. 储能科学与技术, 2015, 4(2):141-146. WEI Kunpeng, WANG Yong, DAI Xingjian. Review of flywheel energy storage system for wind power applications[J]. Energy Storage Science and Technology, 2015, 4(2):141-146.
[10] 李然. 飞轮储能技术在电力系统中的应用和推广[J]. 电气时代, 2017:40-42. LI Ran. Application of flywheel energy storage system in power system[J]. The Age of Electricity, 2017:40-42.
[11] CALNETIX TECHNOLOGIES. Vycon direct connect kinetic energy storage systems[EB/OL]. USA, 2016. http://www.Calnetix.com/.
[12] ACTIVE POWER. Clean source xt ups single module systems[EB/OL]. USA, 2017. http://www.activepower.com/en-US/documents/3974/cleansource-xt250-ups-en.pdf.
[13] HEADQUARTERS. Piller power systems[EB/OL]. Germany, 2017. http://www.piller.com/en-GB/documents/552/apostar-static-ups-brochure-en.pdf.
[14] 鲍海静, 梁培鑫, 柴凤. 飞轮储能用高速永磁同步电机技术综述[J]. 微电机, 2014, 47(2):64-72. BAO Haijing, LIANG Peixin, CHAI Feng. Key technology of high speed permanent magnet synchronous motors for FESS[J]. Micromotors, 2014, 47(2):64-72.
[15] 邢向上, 姜新建. 飞轮储能系统电机及其控制器概述[J]. 储能科学与技术, 2015, 4(2):147-152. XING Xiangshang, JIANG Xinjian. Introduction to motors and controllers of flywheel energy storage systems[J]. Energy Storage Science and Technology, 2015, 4(2):147-152.
[16] 陆婋泉, 林鹤云, 韩俊林. 永磁同步电机的扰动观测器无位置传感器控制[J]. 中国电机工程学报, 2016, 36(5):1387-1393. LU Xiaoquan, LIN Heyun, HAN Junlin. Position sensorless control of permanent magnet synchronous machine[J]. Proceedings of the CSEE, 2016, 36(5):1387-1393
[17] ZHAO Jing, GU Zhongxin, LI Bin, et al. Research on the torque and back EMF performance of a high speed PMSM used for flywheel energy storage[J]. Energies, 2017, 8(4):2867-2888.
[18] WANG Gengji, WANG Ping. Rotor loss analysis of PMSM in flywheel energy storage system as uninterruptable power supply[J]. IEEE Transactions on Applied Superconductivity, 2017, 26(7):1-7.
[19] 薛小川, 王志强. 磁悬浮储能飞轮振动状态研究[J]. 自动化仪表, 2017, 38(7):89-94. XUE Xiaochuan, WANG Zhiqiang. Study on the vibration condition monitoring for magnetic levitation energy storage flywheel[J]. Process Automation Instrumentation, 2017, 38(7):89-94.
[20] 张激扬, 刘虎, 王虹, 等.飞轮扰振特性及振动控制方法[J]. 空间控制技术与应用, 2014, 40(5):18-25. ZHANG Jiyang, LIU Hu, WANG Hong, et al. Microvibration characteristics of flywheels and its vibration control approaches[J]. Aerospace Control and Application, 2014, 40(5):18-25.
[21] LI Lin, TAN Luyang, KONG Lin, et al. Flywheel micro-vibration characters of a high resolution optical satellite[J]. Journal of Vibroengineering, 2017, 19(6):3981-3993.
[22] 崔淑梅, 匡志, 杜博超. 基于自抗扰控制原理的全电飞机用永磁同步电机转速闭环控制[J]. 电工技术学报, 2017, 32(s1):107-115. CUI Shumei, KUANG Zhi, DU Bochao. Speed closed-loop control of permanent magnet synchronous motor for all-electric aircraft applications based on active disturbance rejection controller[J]. Transactions of China Electrotechnical Society, 2017, 32(s1):107-115.
[23] 梁明亮, 陈志红, 孙晶晶. 基于ESO的永磁同步电机位置伺服系统滑模变结构反步控制[J]. 科技通报, 2017, 33(5):72-76. LIANG Mingliang, CHEN Zhihong, SUN Jingjing. Sliding mode variable structure backstepping control of permanent magnet synchronous motor position servo system based on eso[J]. Bulletin of Science and Technology, 2017, 33(5):72-76.
[24] WU Yunjie, GUO Fei. Adaptive disturbance compensation finite control set optimal control for PMSM systems based on sliding mode extended state observer[J]. Mechanical Systems and Signal Processing, 2018, 98:402-414.
[25] 陈荣. 永磁同步电机控制系统[M]. 北京:中国水利水电出版社, 2009. CHEN Rong. Permanent magnet synchronous motor control system[M]. Beijing:China Waterpower Press, 2009.
[26] 于波, 陈云相, 郭秀忠. 惯性技术[M]. 北京:北京航空航天大学出版社, 1994. YU Bo, CHEN Yunxiang, Guo Xiuzhong. Inertial technology[M]. Beijing:Beihang University, 1994.
[27] 闫永蚕, 汤洲, 高楠, 等. 基于空气动力学的高速列车造型设计研究进展[J]. 机械设计, 2017, 34(6):105-112. YAN Yongcan, TANG Zhou, GAO Nan, et al. Research progress on modeling design of high-speed train based on aerodynamics[J]. Journal of Machine Design, 2017, 34(6):105-112.
[28] 解瑞雪. 车辆尾部多参数空气动力学分析及优化设计[J]. 上海电机学院学报, 2017, 20(3):125-131. XIE Ruixue. Multi-parameter aerodynamic analysis andoptimized[J]. Journal of Shanghai Dianji University, 2017, 20(3):125-131. |