Energy Storage Science and Technology ›› 2018, Vol. 7 ›› Issue (5): 783-793.doi: 10.12028/j.issn.2095-4239.2018.0014
Previous Articles Next Articles
ZHANG Kai, XU Yang, DONG Jinping, ZHANG Xiaozhang
Received:
2018-01-24
Revised:
2018-03-09
Online:
2018-09-01
Published:
2018-03-23
Contact:
10.12028/j.issn.2095-4239.2018.0014
About author:
2018-03-23
CLC Number:
ZHANG Kai, XU Yang, DONG Jinping, ZHANG Xiaozhang. Application of active magnetic bearings in flywheel systems[J]. Energy Storage Science and Technology, 2018, 7(5): 783-793.
[1] SCHWEITZER G, BLEULER H, TRAXLER A. Active magnetic bearings-basics, properties and application of active magnetic bearings[M]. ETH, Switzerland:Hochschulverlag A G, 1994. [2] SCHWERTZER G, MASLEN E. Magnetic bearings theory, design, and application to rotating machinery[M]. Berlin:Springer, 2009. [3] PAUL A. Magnetic bearings-A primer[C]//Proceedings of 27th Turbomachinery Symposium, Texas A & M University, USA, 1998. [4] 白城均, 宋方臻, 邵海燕. 磁力轴承的发展及应用[J]. 济南大学学报(自然科学版), 2007, 21(4):325-331. BAI C, SONG F, SHAO H. Development and application of magnetic bearings[J]. Journal of University of Jinan(Sci.&Tech.), 2007, 21(4):325-331. [5] HAWKINS L, MURPHY B, ZIERER J. Shock and vibration testing of an AMB supported energy storage flywheel[J]. JSME Int. J., Ser. C, 2003, 46(2):429-435. [6] FLYNN M. A methodology for evaluating and reducing rotor losses, heating, and operational limitations of high-speed flywheel batteries[D]. Austin:The University of Texas, 2003. [7] PALAZZOLO A, JOHNSON C, THOMAS E, et al. Zero gravity test of a 40,000 r/min flywheel[C]//Proceedings of the 13th International Symposium on Magnetic Bearings, Arlington, VA, USA, 2012. [8] ARKADIUSZ M, ZDZISLAW G. Energy save robust control of active magnetic bearings in flywheel[C]//Proceedings of the 12th International Symposium on Magnetic Bearings, Wuhan, China, 2010. [9] SHIMIZU F, NONAMI K. Benchmark and verification of control algorithm for flywheel with active magnetic bearing on electric vehicle and proposal of new SAC algorithm (epsilon-1 modification and bias variable gamma-p approach)[C]//Proceedings of the 14th International Symposium on Magnetic Bearings, Linz, Austria, 2014. [10] RACHMANTO B, NONAMI K, HIURA Y, KAGAMⅡSHI T. Variable bias type AMB flywheel powered electric vehicle without any touchdown against load disturbance[C]//Proceedings of the 12th International Symposium on Magnetic Bearings, Wuhan, China, 2010. [11] KAGAMⅡSHI T, RACHMANTO B, HIURA Y, et al. Optimized design for AMB based flywheel energy storage and power conversion systems[C]//Proceedings of the 12th International Symposium on Magnetic Bearings, Wuhan, China, 2010. [12] YOU D, JANG S, LEE J, et al. Dynamic performance estimation of high-power FESS using the operating torque of a PM synchronous motor/generator[J]. IEEE Trans. Magnetics, 2008, 44(11):4155-4158. [13] MICHAEL S, THOMAS R, ENRICO B, et al. The challenges of miniaturisation for a magnetic bearing wheel[C]//Proceedings of the 9th European Space Mechanisms and Tribology Symposium, Liege, France, 2001. [14] QUURCK L, SCHAEDE H, RICHTER M, et al. High speed backup bearings for outer-rotor-type flywheels-proposed test rig design[C]//Proceedings of the 14th International Symposium on Magnetic Bearings, Linz, Austria, 2014. [15] LORENZ F, WERNER R. Comparison of magnetic bearings and hybrid roller bearings in a mobile flywheel energy storage[C]//Proceedings of the 1st Brazilian Workshop on Magnetic Bearings, Rio de Janeiro, Brazil, 2013. [16] GENTA G. Kinetic energy storage:An ideal application for magnetic bearings[C]//Proceedings of the 14th International Symposium on Magnetic Bearings, Linz, Austria, 2014. [17] ABRAHAMSSON J, BERNHOFF H. Magnetic bearings in kinetic energy storage systems for vehicular applications[J]. Journal of Electrical Systems, 2011, 7(13):225-236. [18] LYU X, DI L, YOON S, et al. Emulation of energy storage flywheels on a rotor-AMB test rig[C]//Proceedings of the 14th International Symposium on Magnetic Bearings, Linz, Austria, 2014. [19] HINTERDORFER T, SCHULZ A, SIMA H, et al. Topology optimization of a flywheel energy storage rotor using a genetic algorithm[C]//Proceedings of the 14th International Symposium on Magnetic Bearings, Linz, Austria, 2014. [20] AHRENS M, KUCERA L. Modal analysis and vibration behaviour of a magnetically suspended flywheel energy storage device[C]//ISMA 21, Noise and Vibration Engineering Conf., Leuwen, Belgium, 1996, 9:18-20. [21] 张剀, 赵雷, 赵鸿宾. 电磁力超前控制在磁悬浮飞轮中的应用[J]. 机械工程学报, 2004, 40(7):175-179. ZHANG K, ZHAO L, ZHAO H. Application of magnetic force lead control on a flywheel suspended by AMBs[J]. Chinese Journal of Mechanical Engineering, 2004, 40(7):175-179. [22] 白金刚, 张小章, 张剀, 等. 磁悬浮储能飞轮系统中的磁轴承参数辨识[J]. 清华大学学报(自然科学版), 2008, 48(3):382-390. BAI J, ZHANG X, ZHANG K, et al. Parameter identification for active magnetic bearings in energy storage flywheel[J]. Journal of Tsinghua University(Science and Technology), 2008, 48(3):382-390. [23] 白金刚, 赵雷, 张剀, 等. 复合材料储能飞轮挠性结构振动的磁轴承控制[J]. 机械工程学报, 2016, 52(8):36-42. BAI J G, ZHAO L, ZHANG K, et al. Vibration control by AMBs for composite material energy storage flywheel with flexible structure[J]. Chinese Journal of Mechanical Engineering, 2016, 52(8):36-42. [24] 韩邦成, 张姝娜, 房建成, 等. 磁悬浮反作用飞轮系统模态分析及试验研究[J]. 系统仿真学报, 2008, 20(3):763-766. HAN B C, ZHANG S N, FANG J C, et al. Modal analysis and experiment study of magnetically suspended reaction flywheel[J]. Journal of System Simulation, 2008, 20(3):763-766. [25] 韩邦成, 虎刚, 房建成, 等. 50 Nms磁悬浮反作用飞轮转子优化设计方法的研究[J]. 宇航学报, 2006, 27(3):536-540. HAN B C, HU G, FANG J C, et al. Optimization design of magnetic bearing reaction wheel rotor[J]. Journal of Astronautics, 2006, 27(3):536-540. [26] 侯二永, 刘昆, 单小强. 扁平型外转子混合磁悬浮飞轮动力学分析[J]. 宇航学报, 2011, 32(5):998-1004. HOU E Y,LIU K,SHAN X Q. Analysis of dynamics characteristics of hybrid magnetic suspension flywheel with oblate external rotor[J]. Journal of Astronautics, 2011, 32(5):998-1004. [27] 章琦, 祝长生. 电磁悬浮飞轮转子系统的模态解耦控制[J]. 振动工程学报, 2012, 25(3):302-310. ZHANG Q, ZHU C S. Modal decoupling control for active magnetic bearing-supported flywheel rotor system[J]. Journal of Vibration Engineering, 2012, 25(3):302-310. [28] CHRISTOPHER D, BEACH R. FIywheel technology development program for aerospace applications[J]. IEEE Aerospace and Electronic Systems Magazine, 1998, 13(6):9-14. [29] RALPH H. flywheel integrated power and attitude control system demonstrated with flywheels G2 and D1[R]. Cleveland:NASA/TM-2005-213419, E-14945, 2005, 10:95-96. [30] ANAND D, KIRK J, AMOOD R, et al. System considerations for magnetically suspended flywheel systems[C]//Proceedings of the 21st Intersociety Energy Conversion Engineering Conference, San Diego, California, USA, 1986. [31] KIRK J, ANAND D. Overview of a flywheel stack energy storage system[C]//Proceedings of the Twenty-third Intersociety Energy Conversion Engineering Conference, ASME, Denver, CO, USA, 1988. [32] BRIAN C. Control designs for low-loss active magnetic bearings:theory and implementation[D]. Atlanta:School of Electrical and Computer Engineering, Georgia Institute of Technology, 2004. [33] KERRY L, RALPH H, JERRY F, et al. Aerospace flywheel technology development for IPACS applications[R]. Cleveland:NASA/TM 2001-2110936, 2001, 10:5-6. [34] MATTHEW T, BRIAN T, JOHN D. Spin commissioning and drop tests of a 130 kW-hr composite flywheel[C]//Proceedings of the 9th International Symposium on Magnetic Bearings, Lexington, Kentucky, USA, 2004. [35] YEONKYU K. Integrated power and attitude control of a rigid satellite with onboard magnetic bearing suspended rigid flywheels[D]. Texas:A&M University, 2003. [36] STUDER P. Magnetic bearings for instruments in the space environment[R]. NASA TM-78048, 1978. [37] ROBINSON A. A lightweight, low-cost, magnetic bearing reaction wheel for satellite attitude control applications[J]. ESA Journal, 1982(4):397-406. [38] AUER W. Ball bearing versus magnetic bearing reaction and momentum wheels as momentum actuators[C]//AIAA International Meeting & Technical Display "Global Technology 2000", 1980, 5:1-6. [39] MURAKAMI C, OHKAMI Y, OKAMOTO O, et al. A new type of magnetic gimballed momentum wheel and its application to attitude control in space[J]. Acta Astronautica, 1984, 11(9):613-619. [40] HE Y, NONAMI K, SHIMIZU F. A method of simple adaptive control for MIMO nonlinear AMB-flywheel levitation system[C]//Proceedings of the 14th International Symposium on Magnetic Bearings, Linz, Austria, 2014. [41] SUGINO M, NAGASHIMA K, OGATA M, et al. The development of the flywheel energy storage system applying the high temperature superconducting magnetic bearing-The examination of a demonstration machine by having it charged/discharged with solar photovoltaic power[C]//Proceedings of the 15th International Symposium on Magnetic Bearings, Kitakyushu, Japan, 2016. [42] KOSHIZUKA N. R&D of superconducting bearing technologies for flywheel energy storage systems[J]. Physica C, 2006, 445/448:1103-1108. [43] ZHAO L, ZHANG K, ZHU R, et al. Experimental research on a momentum wheel suspended by active magnetic bearings[C]//Proceedings of the Eighth International Symposium on Magnetic Bearings. Mito, Ibaraki-Pref., Japan, 2002. [44] 张剀. 磁悬浮动量轮系统研究[D]. 北京:清华大学, 2005. ZHANG K. Investigations of the moment wheel system suspended by active magnetic bearings[D]. Beijing:Tsinghua University, 2005. [45] 赵建辉. 单框架控制力矩陀螺磁悬浮支承系统关键技术研究[D]. 北京:北京航空航天大学, 2002. ZHAO Jianhui. Research on key technology of magnetic suspension systems for single gimbal control moment gyroscope[D]. Beijing:Beijing University of Aeronautics & Astronautics, 2002. [46] 吴刚. 混合磁轴承飞轮系统设计与控制方法研究[D]. 长沙:国防科技大学, 2006. WU G. Study on system design and control methods of hybrid magnetic bearing momentum flywheel[D]. Changsha:National University of Defense Technology, 2006. [47] 田占元, 祝长生, 王玎. 飞轮储能用高速永磁电机转子的涡流损耗[J]. 浙江大学学报(工学版), 2011, 45(3):451-457. TIAN Z Y, ZHU C S, WANG D. Rotor eddy current loss in high speed permanent magnet motors for flywheel energy storage system[J]. Journal of Zhejiang University(Engineering Science), 2011, 45(3):451-457. [48] 汤双清. 飞轮电池磁悬浮支承系统理论及应用研究[D]. 武汉:华中科技大学, 2003. YANG S Q. Research on theory of magnetic suspension supporting system and application for flywheel battery[D]. Wuhan:Huazhong University of Science & Technology, 2003. [49] 向楠. 磁悬浮飞轮电池支承控制系统研究[D]. 武汉:武汉理工大学, 2012. XIANG N. Research on the bearing-supported control system of magnetic bearing flywheel battery[D]. Wuhan:Wuhan University of Technology, 2012. [50] JIANG S, JU L. Study on electromechanical coupling nonlinear vibration of flywheel energy storage system[J]. Science in China:Series E Technologyical Sciences, 2006, 49(1):61-77. [51] 张剀, 赵雷, 赵鸿宾. 磁轴承飞轮控制系统设计中LQR方法的应用研究[J]. 机械工程学报, 2004, 40(2):127-131. ZHANG K, ZHAO L, ZHAO H B. LQR method research on control of the flywheel system suspended by AMBs[J]. Chinese Journal of Mechanical Engineering, 2004, 40(2):127-131. [52] 张剀, 张小章, 赵雷, 等. 磁悬浮飞轮陀螺力学与控制原理[J]. 机械工程学报, 2007, 43(3):102-106. ZHANG K, ZHANG X Z, ZHAO L, et al. Gyroscopic dynamics and control principles of flywheels supported by active magnetic bearings[J]. Chinese Journal of Mechanical Engineering, 2007, 43(3):102-106. [53] 白金刚. 储能飞轮磁轴承系统研究[D]. 北京:清华大学, 2007. BAI J G. Investigations of active magnetic bearings for the flywheel energy storage system[D]. Beijing:Tsinghua University, 2007. [54] 董淑成, 房建成, 俞文伯. 基于PID控制的主动磁轴承-飞轮转子系统运动稳定性研究[J]. 宇航学报, 2005, 26(3):296-300. DONG S C, FANG J C, YU W B. Study on dynamic stability of flywheel rotor supported by amb based on PID controller[J]. Journal of Astronautics, 2005, 26(3):296-300. [55] 田希晖, 房建成, 刘刚. 一种磁悬浮飞轮增益预调交叉反馈控制方法[J]. 北京航空航天大学学报, 2006, 32(11):1299-1303. TIAN X H, FANG J C, LIU G. Gain scheduling cross feedback control approach for magnetic suspend ing flywheel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(11):1299-1303. [56] 孙津济, 房建成. 磁悬浮飞轮用新型永磁偏置径向磁轴承的设计[J]. 轴承, 2008(3):8-13. SUN J J, FANG J C. Design on new permanent magnet biased radial magnetic bearing in magnetic suspending flywheel[J]. Bearing, 2008(3):8-13. [57] 房建成, 杨磊, 孙津济, 等. 一种新型磁悬浮飞轮用永磁偏置径向磁轴承[J]. 光学精密工程, 2008, 16(3):444-451. FANG J C, YANG L, SUN J J, et al. Novel permanent-magnet bias radial magnetic bearing used in magnetical suspended flywheel[J]. Optics and Precision Engineering, 2008, 16(3):444-451. [58] 吴刚, 刘昆, 张育林, 等. 磁悬浮动量轮设计与实验研究[J]. 轴承, 2005(8):4-7. WU G,LIU K, ZHANG Y L, et al. Design and experimental study on magnetic suspended momentum wheels[J]. Bearing, 2005(8):4-7. [59] 张立, 刘昆. 基于FPGA的飞轮磁轴承一体化控制系统设计[J]. 电机与控制学报, 2012, 16(4):84-90. ZHANG L, LIU K. Integrated control system design of magnetic bearings for flywheel based on FPGA[J]. Electric Machines and Control, 2012, 16(4):84-90. [60] 毛川, 祝长生. 主动电磁轴承-刚性转子系统实时变步长迭代不平衡补偿[J]. 中国电机工程学报, 2017, 29:1-8. MAO C, ZHU C S. A real-time variable step size iterative unbalance compensation for active magnetic bearing-rigid rotor systems[J]. Proceedings of the CSEE, 2017, 29:1-8. [61] 汤双清, 蔡敢为, 杨家军, 等. 用于飞轮电池的电动磁力轴承的研究[J]. 华中科技大学学报(自然科学版), 2003, 31(4):9-11. TANG S Q, CAI G W, YANG J J, et al. Suspension mechanism and stability of electrodynamic magnetic bearings[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2003, 31(4):9-11. [62] 汪勋超. 碳纤维复合材料飞轮的设计[D]. 武汉:武汉理工大学, 2013. WANG X. The design of carbon fiber composite flywheel[D]. Wuhan:Wuhan University of Technology, 2013. [63] 王抗. 飞轮储能用高效磁轴承的基础研究[D]. 南京:东南大学, 2015. WANG K. Study on high efficiency magnetic bearing for flywheel energy storage[D]. Nanjing:Southeast University, 2015. [64] FILATOV A, HAWKINS L. Combination axial and radial active magnetic bearing with improved axial bandwidth[C]//ASME Turbo Expo 2012, Copenhagen, Denmark, 2012. [65] BONFITTO A, TONOLI A, AMATI N, et al. Turbomolecular pumps on active conical magnetic bearings[C]//Proceedings of the 15th International Symposium on Magnetic Bearings, Kitakyushu, Japan, 2016. [66] JASTRZEBSKI R, JAATINEN P, CHIBA A. Efficiency of buried permanent magnet type 5 kW and 50 kW high-speed bearingless motors with 4-pole motor windings and 2-pole suspension windings[C]//Proceedings of the 15th International Symposium on Magnetic Bearings, Kitakyushu, Japan, 2016. [67] ZHANG K, DAI X, DONG J. An energy storage flywheel supported by hybrid bearings[C]//Proceedings of the 14th International Symposium on Magnetic Bearings, Linz, Austria, 2014. [68] AHRENS M, KUCERA L, LARSONNEUR R. Performance of a magnetically suspended flywheel energy storage device[J]. IEEE Transactions on Control Systems Technology, 1996, 4(5):494-502. [69] AHRENS M, KUCERA L. Cross feedback control of a magnetic bearing system controller design considering gyroscopic effects[C]//Proceedings of the Third International Symposium on Magnetic Bearings, Alexandria, Virginia, USA, 1996. [70] SCHOENHOFF U, LUO J, LI G, et al. Implementation results of mu-synthesis control for energy storage flywheel test rig[C]//Proceedings of the Seventh International Symposium on Magnetic Bearings, ETH Zurich, Switzerland, 2000. [71] 张剀, 张小章, 赵雷, 等. 磁悬浮飞轮结构模态振动控制[J]. 机械工程学报, 2007, 43(6):220-225. ZHANG K, ZHANG X Z, ZHAO L, et al. Structure eigen vibration control of flywheel suspended by active magnetic bearings[J]. Chinese Journal of Mechanical Engineering, 2007, 43(6):220-225. [72] 张剀, 赵雷, 赵鸿宾. 磁悬浮飞轮低功耗控制方法仿真研究[J]. 清华大学学报(自然科学版), 2004, 44(3):301-303. ZHANG K, ZHAO L, ZHAO H B. Zero-power control method for a flywheel suspended by active magnetic bearings[J]. Journal of Tsinghua University(Science and Technology), 2004, 44(3):301-303. [73] HAWKINS L, MURPHY B, KAJS J. Analysis and testing of a magnetic bearing energy storage flywheel with gain-scheduled, MIMO Control[C]//ASME 2000-GT-405, Presented at ASME IGTI Conference, Munich, Germany:2000. [74] 张剀, 张小章. 磁轴承不平衡控制技术的研究进展[J]. 中国机械工程, 2010, 8:897-903. ZHANG K, ZHANG X. A review of unbalance control technology of active magnetic bearings[J]. China Mechanical Engineering, 2010, 8:897-903. [75] DARBANDI S, HABIBOLLAHI A, BEHZAD M, et al. Sensor runout compensation in active magnetic bearings via an integral adaptive observer[J]. Control Engineering Practice, 2016, 48(3):111-118. [76] AHRENS M, KUCERA L, LARSONNEUR R. Field experiences with a highly unbalanced magnetically suspended flywheel rotor[C]//Proceedings of the Fifth International. Symposium on Magnetic Bearings, Kanazawa, Japan, 1996. [77] 石庆才, 谢振宇, 吴凯锋, 等. 同极型和异极型磁轴承的磁场分布和功率损耗分析[J]. 机械设计, 2011, 28(11):22-27. SHI Q C, XIE Z Y, WU K F, et al. Analysis on electromagnetic field and power loss of homopolar and heteropolar magnetic bearing[J]. Journal of Machine Design, 2011, 28(11):22-27. [78] HAWKINS L, FLYNN M. Influence of control strategy on measured actuator power consumption in an energy storage flywheel with magnetic bearings[C]//Proc. of the 6th Intl. Symp. on Magnetic Suspension Tech, Turin, Italy, 2001. [79] 王晓峰, 姚光晔. 高速旋转机械转子发黑层热老化寿命研究[C]//核工业第七届可靠性研究成果专刊论文集, 北京, 2004. [80] MCMULLEN P, VUONG V, HAWKINS L. Flywheel energy storage system with AMB's and hybrid backup bearings[C]//Proceedings of the 10th International Symposium on Magnetic Bearings, Martigny, Switzerland, 2006. [81] LI P, SAHINKAYA N, KEOGH P. Active touchdown bearing control for recovery of contact-free rotor levitation in AMB systems[C]//Proceedings of the 14th International Symposium on Magnetic Bearings, Linz, Austria, 2014. [82] 杨雷, 杨国军, 时振刚. 基于拟静力学方法的HTR-10磁轴承氦风机辅助轴承抗冲击特性研究[J]. 核动力工程, 2016(1):152-156. YANG L, YANG G J, SHI Z G. Research on impact properties of auxiliary bearings in HTR-10 AMB helium circulator based on quasi-static method[J]. Nuclear Power Engineering, 2016(1):152-156. [83] CAO J, ALLAIRE P, DIMOND T, et al. Rotor drop analyses and auxiliary bearing system optimization for AMB supported rotor-part ii:Experiment and optimization[C]//Proceedings of the 15th International Symposium on Magnetic Bearings, Kitakyushu, Japan, 2016. [84] HALMINEN O, ACEITUNO J, ESCALONA J, et al. Models for dynamic analysis of backup ball bearings of an AMB-system[J]. Mechanical Systems and Signal Processing, 2017, 95(10):324-344. [85] FONSECA C, SANTOS I, WEBER H. Experimental comparison of the nonlinear dynamic behavior of a rigid rotor interacting with two types of different radial backup bearings:Ball & pinned[J]. Tribology International, 2018, 119(3):250-261. [86] NA U. Fault tolerance of homopolar magnetic bearings[J]. Journal of Sound and Vibration, 2004, 272:495-511. [87] SCHWEITZER G. Safety and reliability aspects for active magnetic bearing applications-A survey[C]//In Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2005, 219(6):383-392.> [77] 石庆才, 谢振宇, 吴凯锋, 章淑锳. 同极型和异极型磁轴承的磁场分布和功率损耗分析[J]. 机械设计, 2011, 28(11):22-27. SHI Q, XIE Z, WU K, etc. Analysis on electromagnetic field and power loss of homopolar and heteropolar magnetic bearing[J]. Journal of Machine Design, 2011, 28(11):22-27. [78] HAWKINS L, FLYNN M. Influence of control strategy on measured actuator power consumption in an energy storage flywheel with magnetic bearings[C]. In Proc. of the 6th Intl. Symp. on Magnetic Suspension Tech, Turin, Italy, 2001.10. [79] 王晓峰, 姚光晔. 高速旋转机械转子发黑层热老化寿命研究[C]. 核工业第七届可靠性研究成果专刊论文集, 2004.6. [80] MCMULLEN P, VUONG V, HAWKINS L. Flywheel energy storage system with AMB's and hybrid backup bearings[C]. In Proceedings of the 10th International Symposium on Magnetic Bearings, Martigny, Switzerland, 2006.8. [81] LI P, SAHINKAYA N, KEOGH P. Active touchdown bearing control for recovery of contact-free rotor levitation in AMB systems[C]. In Proceedings of the 14th International Symposium on Magnetic Bearings, Linz, Austria, 2014.8. [82] 杨雷, 杨国军, 时振刚. 基于拟静力学方法的HTR-10磁轴承氦风机辅助轴承抗冲击特性研究[J]. 核动力工程, 2016(1):152-156. YANG L, YANG G, SHI Z. Research on impact properties of auxiliary bearings in HTR-10 AMB helium circulator based on quasi-static method[J]. Nuclear Power Engineering, 2016(1):152-156. [83] CAO J, ALLAIRE P, DIMOND T, RENSBURG J. Rotor drop analyses and auxiliary bearing system optimization for AMB supported rotor-part ii:experiment and optimization[C]. In Proceedings of the 15th International Symposium on Magnetic Bearings, Kitakyushu, Japan, 2016.8. [84] HALMINEN O, ACEITUNO J, ESCALONA J, SOPANEN J, MIKKOLA A. Models for dynamic analysis of backup ball bearings of an AMB-system[J]. Mechanical Systems and Signal Processing, 2017, 95(10):324-344. [85] FONSECA C, SANTOS I, WEBER H. Experimental comparison of the nonlinear dynamic behavior of a rigid rotor interacting with two types of different radial backup bearings:ball & pinned[J]. Tribology International, 2018119(3):250-261. [86] NA U. Fault tolerance of homopolar magnetic bearings[J]. Journal of Sound and Vibration, 2004, 272:495-511. [87] SCHWEITZER G. Safety and reliability aspects for active magnetic bearing applications-a survey[C]. In Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2005, 219(6):383-392. |
[1] | Xiaojie YANG, Haiyun WANG, Zhongchuan JIANG, Zhanghua SONG. Bidirectional power flow strategy design of BLDC motor for flywheel energy storage [J]. Energy Storage Science and Technology, 2022, 11(7): 2233-2240. |
[2] | Junze GAO, Yibing LIU, Chuandi ZHOU, Haiting HE, Xin WU. Magnetic circuit design and magnetic analytical model of permanent magnet suspension bearing for flywheel [J]. Energy Storage Science and Technology, 2022, 11(5): 1437-1445. |
[3] | Yong ZHOU, Xiangyu CHEN, Lin JIAN, Fuhui WANG, Degao TIAN, Chuanjun HAN. Design and experimental research on flywheel energy storage system of beam pumping unit [J]. Energy Storage Science and Technology, 2022, 11(2): 593-599. |
[4] | Shusheng LI, Jialiang WANG, Guangjun LI, Dachun WANG, Yadong CUI. Demonstration applications in wind solar energy storage field based on MW flywheel array system [J]. Energy Storage Science and Technology, 2022, 11(2): 583-592. |
[5] | Yulong CHEN, Xin WU, Wei TENG, Yibing LIU. Power coordinated control strategy of flywheel energy storage array for wind power smoothing [J]. Energy Storage Science and Technology, 2022, 11(2): 600-608. |
[6] | Suhang YU, Wenyong GUO, Yuping TENG, Wenju SANG, Yang CAI, Chenyu TIAN. A review of the structures and control strategies for flywheel bearings [J]. Energy Storage Science and Technology, 2021, 10(5): 1631-1642. |
[7] | Xingjian DAI, Dongxu HU, Zhilai ZHANG, Haisheng CHEN, Yangli ZHU. Analysis and application of high strength alloy steel flywheel structure and material [J]. Energy Storage Science and Technology, 2021, 10(5): 1667-1673. |
[8] | Xing ZHANG, Peng RUAN, Liuli ZHANG, Gangling TIAN, Baohong ZHU. Performance test of flywheel energy storage device [J]. Energy Storage Science and Technology, 2021, 10(5): 1674-1678. |
[9] | Linxuan HE, Wenyan LI. Simulation of the primary frequency modulation process of thermal power units with the auxiliary of flywheel energy storage [J]. Energy Storage Science and Technology, 2021, 10(5): 1679-1686. |
[10] | Hong LI, Jiangwei CHU, Shufa SUN, Honggang LI. Characteristics of vehicle-mounted electromagnetic coupling flywheel energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1687-1693. |
[11] | Xing ZHANG, Peng RUAN, Liuli ZHANG, Juan LI, Gangling TIAN, Dongxu HU, Baohong ZHU. Application analysis of flywheel energy storage in thermal power frequency modulation in central China [J]. Energy Storage Science and Technology, 2021, 10(5): 1694-1700. |
[12] | Chen LAN, Wenyan LI. Stress characteristics of two kinds of variable thickness hollow energy storage flywheels [J]. Energy Storage Science and Technology, 2021, 10(3): 1080-1087. |
[13] | Baohong ZHU, Guangjun LI, Shusheng LI, Yadong CUI. Power compensation and energy saving application of oil well generator based on energy storage flywheel [J]. Energy Storage Science and Technology, 2021, 10(3): 1088-1094. |
[14] | Wencan LI, Jingliang LV, Xinjian JIANG, Xinzhen ZHANG. Control method for fault ride-through of flywheel energy storage system based on multi-mode coordination [J]. Energy Storage Science and Technology, 2020, 9(6): 1905-1916. |
[15] | Junshui WANG, Xingjian DAI, Yang XU, Zhenhong PI. Optimization design of a high-speed flywheel for energy storage with a mandrel hub assembly [J]. Energy Storage Science and Technology, 2020, 9(6): 1806-1811. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||