Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (6): 1691-1701.doi: 10.19799/j.cnki.2095-4239.2020.0167
• Energy Storage Materials and Devices • Previous Articles Next Articles
Yueyuan GU(), Jucai WEI, Jindong LI, Luyang WANG, Xu WU()
Received:
2020-05-06
Revised:
2020-06-15
Online:
2020-11-05
Published:
2020-10-28
Contact:
Xu WU
E-mail:d201677834@hust.edu.cn;pyofxuwu@hust.edu.cn
CLC Number:
Yueyuan GU, Jucai WEI, Jindong LI, Luyang WANG, Xu WU. Overview and prospect of studies on electrochemical reduction of carbon dioxide electrolyzers[J]. Energy Storage Science and Technology, 2020, 9(6): 1691-1701.
Table 1
Specifications and main results of continuous-flow CO2 electrolyzers"
setup | membrane | current collector | catalysts | reference electrode | feeding | electrolyte composition | main results | Ref. | ||
---|---|---|---|---|---|---|---|---|---|---|
cathode | anode | cathode | anode | |||||||
(a) | Nafion? 117 | Al | Ag 10mg/1.5 cm2 | Pt 10mg/1.5 cm2 | Home-made Ag/Ag+ | CO2 2.5 sccm solution 0.5 mL/min | 18% EMIM BF4 | 100 mM H2SO4 | 1.5~2.5 V, CO FE>96% for at least 7 hours | [ |
(d) | none | Al | Ag 0.75 mg/cm2 | Pt/C 4.25 mg/cm2 | External Ag/AgCl | CO2 7 sccm solution 0.5mL/min | 1 mol/L KCl | -1.56 V vs Ag/AgCl Air-brushed , CO FE (95±5)%; hand-painted, CO FE (83±14)% | [ | |
(d) | none | Al and graphite | Ag 0.9 mg/cm2 | Pt 1.0 mg/cm2 | none | CO2 diluted by N2 7 sccm solution 0.4 mL/min | 1 mol/L KCl | 3 V, 10%~100% v/v CO2, CO FE>80% | [ | |
(b) | BPM | gold-coated graphite | Ag BiOx | NiFeOx | none | - | 0.5 mol/L KHCO3 saturated with CO2 | 0.1 mol/L KOH | 50 mA/cm2, CO FE>60% | [ |
(d) | none | Stainless steel | Ag (2±0.1) mg/cm2 | IrO2 (2±0.1) mg/cm2 | Ag/AgCl (inlet) | CO2 17 sccm solution 0.5 mL/min | 3 mol/L KOH | 2.75 V, 342.8 mA/cm2 CO (101.2%) | [ | |
(a) | AEM | - | Ag | IrO2 | none | CO2 10 sccm | 50% EMIMCI | 0.5 mol/L H2SO4 | 50 mA/cm2, CO FE 97.08% pH adjusted to 6.6, 25 mA/cm2, CO FE 99.1% | [ |
(d) | none | Al | Ag 0.75 mg/cm2 | Pt/C 4.25 mg/cm2 | External Ag/AgCl | CO2 7 sccm solution 0.5mL/min | 1 mol/L KCl | -1.62 V vs Ag/AgCl (cell potential 3V), CO FE ~98%, partial current density ~90mA/cm2 | [ | |
CN/MWCNT 2.39 mg/cm2 | -1.68 V vs Ag/AgCl (cell potential 3V), CO FE ~93%, partial current density ~86 mA/cm2 | |||||||||
(c) | CEM | Ti | Ag or Cu (5mg/cm2) | IrO2 (2mg/cm2) | Ag/AgCl | CO2 4.5 sccm | 0.5 mol/L K2SO4 | Cu, -0.8 V vs. RHE, CO FE ~75% Ag, -0.8 V vs. RHE, CO FE ~80% | [ | |
(d) | none | Al | MWNT/PyPBI/Au 0.34 mg/cm2 | Pt /C 4.25 mg/cm2 | Ag/AgCl (outlet) | CO2 7 sccm solution 0.5 mL/min | 1 mol/L KCl | -1.4 V vs Ag/AgCl, CO FE 92% | [ | |
(d) | none | stainless steel | MWNT/PyPBI/Au (1±0.1) mg/cm2 | IrO2 (4.25±0.25) mg/cm2 | Ag/AgCl (inlet) | CO2 17 sccm solution 0.5mL/min | 2 mol/L KOH | -0.22 V vs RHE (cell potential-1.7 V) CO FE 98.3% | [ | |
(b) | CEM | titanium | Cu | IrO2 | none | both 100 sccm | CO2 | humidified N2(25、50、75%) | relative humidity 72.5%, 30 oC, 6 V Hydrocarbons FE 0.12%; relative humidity 73.7 %, 70 oC, 2.4 V hydrocarbons FE 0.11% | [ |
(a) | AEM | Stainless steel | Cu 1.0 mg/cm2 | IrO2 1.0 mg/cm2 | Ag/AgCl (outlet) | CO2 7 sccm; solution 0.5 mL/min(-2~-3.5 V)0.1 mL/min (-1.6~-2 V) | 1 mol/L KOH | 1 mol/L KOH | -0.58 V vs. RHE, C2H4 and C2H5OH FE 46%, partial current density ~200 mA/cm2 | [ |
(c) | Nafion? 117 | - | Cu2O 1 mg/cm2 | Ti | Ag/AgCl | CO2 10~40 mL/min solution 1~3 mL/min | 0.5 mol/L KHCO3 | 0.5 mol/L KHCO3 | 10 mA/cm2 CH3OH FE 42.3%, rT=83.2 μmol/(m2·s-1) | [ |
Cu2O/ZnO 1mg/cm2 | 10 mA/cm2 CH3OH FE 27.5%, rT=50.8 μmol/(m2·s-1) | |||||||||
(b) | PBI | carbon paper | Cu-CNF 0.5 mg/cm2 | IrO2 0.5 mg/cm2 | - | CO2 0.5 NmL/min N2 6 NmL/min | CO2 | N2 1 mol/L H3PO4 saturator | 110 ℃, -0.8 mA/cm2, acetaldehyde FE 85%, r>24 nmol/(h·cm-2); 110 ℃, -1.6 mA/cm2, acetaldehyde FE 70%, r>55nmol/(h·cm-2) | [ |
(b) | Nafion115 AAEM | - | 1 mg/cm2 Cu/CNTs Pt/C Pd/C | Pt/C | none | both 20 mL/min | humidified CO2 (100%) | humidified H2(100%) | 40 ℃, 3V, CO, r=8.88 μmol/(h·cm-2), r=0.75 μmol/(h·cm-2), r=7.59 μmol/(h·cm-2) | [ |
(c) | Nafion? 117 | - | Sn 1.5 mg/cm2 | DSA | Ag/AgCl | CO2 0.57 mL/(min·cm-2) | 0.45 mol/L KHCO3 + 0.5 mol/L KCl | 1 mol/L KOH | 40 mA/cm2, cell potential 3.21 V, Formate FE 70.5% | [ |
(b) | BPM | - | Sn | Ir-MMO | none | solution 10 mL/min | pressured CO2 0.5mol/L KHCO3 | pressured N2 1mol/L KOH | 3.5 V, 40 bar, ~30 mA/cm2, HCOOH FE ~90% 4 V, 50 bar, ~100 mA/cm2, HCOOH FE ~65% | [ |
CEM | pressured CO2 1mol/L KHCO3 | pressured N2 0.5mol/L H2SO4 | 3.5 V, 40 bar, ~50 mA/cm2, HCOOH FE ~90% 3.5 V, 50 bar, ~60 mA/cm2, HCOOH FE ~80% | |||||||
(d) | none | graphite | Ru–Pd/C 2 mg/cm2 | Pt/C 2 mg/cm2 | Ag/AgCl (outlet) | CO2 5sccm solution 0.5 mL/min | 0.5 mol/L KHCO3 | 3.25 V, HCOOH FE~ 16%, EE~ 7% | [ | |
Sn 5 mg/cm2 | 0.5 mol/L KCl+1mol/L HCl (pH=4) | 3V, ~100 mA/cm2 HCOOH FE 89%, EE 45% | ||||||||
(b) | Nafion117 | - | 1mg/cm2 Pt/C Pt-Ru/C | Pt/C 1mg/cm2 | DHE | Both 50 sccm | N2 or CO2 (fully humidified) | H2 (fully humidified) | 80 ℃ ,0.06 V vs. DHE CH3OH FE 35% CH3OH FE 75% | [ |
(b) | Nafion? 115 | titanium | PtRu/C metal 0.5 mg/cm2 | IrRuOx 0.4 mg/cm2 | none | CO2 50 mL/min solution 4 mL/min | humidified CO2 | H2O | 40 ℃, 1.25V, CH3OH r=0.9 μmol/(g·h-1) 95 ℃, 1.25V, CH3OH r=56 μmol/(g·h-1) | [ |
(b) | Nafion 115 | gold-plated graphite (anode) | Indium | Pt/C | none | - | 1mol/L NaHCO3 | 10%(w/v)NaOH | 40 mA/cm2, HCOOH FE ~77% | [ |
AEM | 1 mol/L NaHCO3 | 40 mA/cm2, HCOOH FE 80% | ||||||||
(b) | Nafion117 | - | Pb | DSA | Ag/AgCl | CO2 200 mL/min solution 1.44 mL /(min·cm-2) | 0.45 mol/L KHCO3 + 0.5 mol/L KCl | 1 mol/L KOH | 10.5 mA/cm2, HCOOH FE 57% | [ |
(b) | Nafion | - | N-doped graphene 0.3~0.5 mg/cm2 | Pt 0.3 mg/cm2 | DHE | CO2 45 sccm H2 50 sccm | CO2 | H2 | -0.58 V vs RHE, ~1.8 mA/cm2, CO FE ~85% for at least 5 h | [ |
(b) | AEM | Ti | Ni-NG 0.5 mg/cm2 | IrO2 0.5 mg/cm2 | none | CO2 50 sccm solution 2 mL/min | humidified CO2 | 0.1 mol/L KHCO3 | 2.78V, ~ 50 mA/cm2, CO FE >90%, for at least 8 h, 3.81 mmol/h | [ |
(b) | PSMIM AEM | Ti | Ni-NG 1.25 mg/cm2 | IrO2 1.25 mg/cm2 | none | CO2 50 or 500 sccm solution 2 or 10 mL/min for different area | humidified CO2 | 0.1 mol/L KHCO3 | 2×2 cm2, 2.46V, ~80 mA/cm2, CO FE~100% for 20h10×10 cm2, 2.8V, ~8A, CO FE >90% for 6h, r=3.34 L/h | [ |
1 | LOBACCARO P, SINGH M R, CLARK E L, et al. Effects of temperature and gas-liquid mass transfer on the operation of small electrochemical cells for the quantitative evaluation of CO2 reduction electrocatalysts[J]. Physical Chemistry Chemical Physics, 2016, 18: 26777-26785. |
2 | JOUNY M, LUC W, JIAO F. General techno-economic analysis of CO2 electrolysis systems[J]. Industrial & Engineering Chemistry Research, 2018, 57: 2165-2177. |
3 | LIU K, SMITH W A, BURDYNY T. Introductory guide to assembling and operating gas diffusion electrodes for electrochemical CO2 reduction[J]. ACS Energy Letters, 2019, 4: 639-643. |
4 | AHANGARI H T, PORTAIL T, MARSHALL A T. Comparing the electrocatalytic reduction of CO2 to CO on gold cathodes in batch and continuous flow electrochemical cells[J]. Electrochemistry Communications, 2019, 101: 78-81. |
5 | ENDRODI B, BENCSIK G, DARVAS F, et al. Continuous-flow electroreduction of carbon dioxide[J]. Progress in Energy and Combustion Science, 2017, 62: 133-154. |
6 | CAVE E R, MONTOYA J H, KUHL K P, et al. Electrochemical CO2 reduction on Au surfaces: Mechanistic aspects regarding the formation of major and minor products[J]. Physical Chemistry Chemical Physics, 2017, 19: 15856-15863. |
7 | LIU Z, MASEL R I, CHEN Q, et al. Electrochemical generation of syngas from water and carbon dioxide at industrially important rates[J]. Journal of CO2 Utilization, 2016, 15: 50-56. |
8 | SHIRONITA S, KARASUDA K, SATO K, et al. Methanol generation by CO2 reduction at a Pt-Ru/C electrocatalyst using a membrane electrode assembly[J]. Journal of Power Sources, 2013, 240: 404-410. |
9 | PEREZ-RODRIGUEZ S, BARRERAS F, PASTOR E, et al. Electrochemical reactors for CO2 reduction: From acid media to gas phase[J]. International Journal of Hydrogen Energy, 2016, 41: 19756-19765. |
10 | WANG G, PAN J, JIANG S P, et al. Gas phase electrochemical conversion of humidified CO2 to CO and H2 on proton-exchange and alkaline anion-exchange membrane fuel cell reactors[J]. Journal of CO2 Utilization, 2018, 23: 152-158. |
11 | KRIESCHER S M A, KUGLER K, HOSSEINY S S, et al. A membrane electrode assembly for the electrochemical synthesis of hydrocarbons from CO2(g) and H2O(g)[J]. Electrochemistry Communications, 2015, 50: 64-68. |
12 | GUTIERREZ-GUERRA N, VALVERDE J L, ROMERO A, et al. Electrocatalytic conversion of CO2 to added-value chemicals in a high-temperature proton-exchange membrane reactor[J]. Electrochemistry Communications, 2017, 81: 128-131. |
13 | VENNEKOETTER J B, SENGPIEL R, WESSLING M. Beyond the catalyst: How electrode and reactor design determine the product spectrum during electrochemical CO2 reduction[J]. Chemical Engineering Journal, 2019, 364: 89-101. |
14 | DELACOURT C, RIDGWAY P L, KERR J B, et al. Design of an electrochemical cell making syngas (CO+H2) from CO2 and H2O reduction at room temperature[J]. Journal of the Electrochemical Society, 2008, 155: B42-B49. |
15 |
PARK G, HONG S, CHOI M, et al. Au on highly hydrophobic carbon substrate for improved selective CO production from CO2 in gas-phase electrolytic cell[J]. Catalysis Today, 2019, doi: org/10.1016/j.cattod. 2019.06.066.
doi: org/10.1016/j.cattod. 2019.06.066 |
16 | HONG S, LEE S, KIM S, et al. Anion dependent CO/H2 production ratio from CO2 reduction on Au electro-catalyst[J]. Catalysis Today, 2017, 295: 82-88. |
17 | KUMAR B, BRIAN J P, ATLA V, et al. New trends in the development of heterogeneous catalysts for electrochemical CO2 reduction[J]. Catalysis Today, 2016, 270: 19-30. |
18 | POROSOFF M D, YAN B, CHEN J G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities[J]. Energy & Environmental Science, 2016, 9: 62-73. |
19 | LU Q, JIAO F. Electrochemical CO2 reduction: Electrocatalyst, reaction mechanism, and process engineering[J]. Nano Energy, 2016, 29: 439-456. |
20 | ZHU D D, LIU J L, QIAO S Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide[J]. Advanced Materials, 2016, 28: 3423-3452. |
21 |
LIU J, GUO C, VASILEFF A, et al. Nanostructured 2D materials: Prospective catalysts for electrochemical CO2 reduction[J]. Small Methods, 2017, doi: 10.1002/smtd.201600006.
doi: 10.1002/smtd.201600006 |
22 | XIE H, WANG T, LIANG J, et al. Cu-based nanocatalysts for electrochemical reduction of CO2[J]. Nano Today, 2018, 21: 41-54. |
23 | ZHANG L, ZHAO Z J, GONG J. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms[J]. Angewandte Chemie-International Edition, 2017, 56: 11326-11353. |
24 |
MISTRY H, VARELA A S, KUEHL S, et al. Nanostructured electrocatalysts with tunable activity and selectivity[J]. Nature Reviews Materials, 2016, doi: 10.1038/natrevmats.2016.9.
doi: 10.1038/natrevmats.2016.9 |
25 | WANG Z L, LI C, YAMAUCHI Y. Nanostructured nonprecious metal catalysts for electrochemical reduction of carbon dioxide[J]. Nano Today, 2016, 11: 373-391. |
26 | KUTZ R B, CHEN Q, YANG H, et al. Sustainion imidazolium-functionalized polymers for carbon dioxide electrolysis[J]. Energy Technology, 2017, 5: 929-936. |
27 | JHONG H R, BRUSHETT F R, KENIS P J. The effects of catalyst layer deposition methodology on electrode performance[J]. Advanced Energy Materials, 2013, 3: 589-599. |
28 | LUC W, ROSEN J, JIAO F. An Ir-based anode for a practical CO2 electrolyzer[J]. Catalysis Today, 2017, 288: 79-84. |
29 | VERMA S, HAMASAKI Y, KIM C, et al. Insights into the low overpotential electroreduction of CO2 to CO on a supported gold catalyst in an alkaline flow electrolyzer[J]. ACS Energy Letters, 2018, 3: 193-198. |
30 | JHONG H R, TORNOW C E, KIM C, et al. Gold nanoparticles on polymer-wrapped carbon nanotubes: An efficient and selective catalyst for the electroreduction of CO2[J]. Chemphyschem, 2017, 18: 3274-3279. |
31 | JHONG H R, TORNOW C E, SMID B, et al. A nitrogen-doped carbon catalyst for electrochemical CO2 conversion to CO with high selectivity and current density[J]. Chemsuschem, 2017, 10: 1094-1099. |
32 | ROSEN B A, SALEHI-KHOJIN A, THORSON M R, et al. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials[J]. Science, 2011, 334: 643-644. |
33 | ALVAREZ-GUERRA M, QUINTANILLA S, IRABIEN A. Conversion of carbon dioxide into formate using a continuous electrochemical reduction process in a lead cathode[J]. Chemical Engineering Journal, 2012, 207: 278-284. |
34 | DINH C T, BURDYNY T, KIBRIA M G, et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface[J]. Science, 2018, 360: 783-787. |
35 | LI Y C, ZHOU D, YAN Z, et al. Electrolysis of CO2 to syngas in bipolar membrane-based electrochemical cells[J]. ACS Energy Letters, 2016, 1: 1149-1153. |
36 | LEONARD M E, CLARKE L E, FORNER-CUENCA A, et al. Investigating electrode flooding in a flowing electrolyte, gas-fed carbon dioxide electrolyzer[J]. Chemsuschem, 2020, 13: 400-411. |
37 | KIM B, HILLMAN F, ARIYOSHI M, et al. Effects of composition of the micro porous layer and the substrate on performance in the electrochemical reduction of CO2 to CO[J]. Journal of Power Sources, 2016, 312: 192-198. |
38 | CAO-THANG D, DE ARQUER F P G, SINTON D, et al. High rate, selective, and stable electroreduction of CO2 to CO in basic and neutral media[J]. ACS Energy Letters, 2018, 3: 2835-2840. |
39 | WEEKES D M, SALVATORE D A, REYES A, et al. Electrolytic CO2 reduction in a flow cell[J]. Accounts of Chemical Research, 2018, 51: 910-918. |
40 | HORI Y, ITO H, OKANO K, et al. Silver-coated ion exchange membrane electrode applied to electrochemical reduction of carbon dioxide[J]. Electrochimica Acta, 2003, 48: 2651-2657. |
41 | YIN Z, PENG H, WEI X, et al. An alkaline polymer electrolyte CO2 electrolyzer operated with pure water[J]. Energy & Environmental Science, 2019, 12: doi: 10.1039/C9EE01204D. |
42 | HORI Y, MURATA A, TAKAHASHI R. Formation of hydrocarbons in the electrochemical reduction of carbon-dioxide at a copper electrode in aqueous-solution[J]. Journal of the Chemical Society-Faraday Transactions I, 1989, 85: 2309-2326. |
43 | KIM B, MA S, JHONG H R, et al. Influence of dilute feed and pH on electrochemical reduction of CO2 to CO on Ag in a continuous flow electrolyzer[J]. Electrochimica Acta, 2015, 166: 271-276. |
44 | VERMA S, LU X, MA S, et al. The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes[J]. Physical Chemistry Chemical Physics, 2016, 18: 7075-7084. |
45 | WHIPPLE D T, FINKE E C and KENIS P J A. Microfluidic reactor for the electrochemical reduction of carbon dioxide: The effect of pH[J]. Electrochemical and Solid State Letters, 2010, 13: D109-D111. |
46 | JONES R J R, WANG Y, LAI Y, et al. Reactor design and integration with product detection to accelerate screening of electrocatalysts for carbon dioxide reduction[J]. Review of Scientific Instruments, 2018, 89: doi: 10.1063/1.5049704. |
47 | ZHENG T, JIANG K, TA N, et al. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst[J]. Joule, 2019, 3: 265-278. |
48 | MA S, SADAKIYO M, LUO R, et al. One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer[J]. Journal of Power Sources, 2016, 301: 219-228. |
49 | SHIRONITA S, SATO K, YOSHITAKE K, et al. Pt-Ru/C anode performance of polymer electrolyte fuel cell under carbon dioxide atmosphere[J]. Electrochimica Acta, 2016, 206: 254-258. |
50 | SHIRONITA S, KARASUDA K, SATO M, et al. Feasibility investigation of methanol generation by CO2 reduction using Pt/C-based membrane electrode assembly for a reversible fuel cell[J]. Journal of Power Sources, 2013, 228: 68-74. |
51 | RAMDIN M, MORRISON A R T, DE GROEN M, et al. High pressure electrochemical reduction of CO2 to formic acid/formate: A comparison between bipolar membranes and cation exchange membranes[J]. Industrial & Engineering Chemistry Research, 2019, 58: 1834-1847. |
52 | NWABARA U O, COFELL E R, VERMA D S, et al. Durable cathodes and electrolyzers for the efficient aqueous electrochemical reduction of CO2[J]. Chemsuschem, 2020, 13: 855-875. |
53 | ROGERS C, PERKINS W S, VEBER G, et al. Synergistic enhancement of electrocatalytic CO2 reduction with gold nanoparticles embedded in functional graphene nanoribbon composite electrodes[J]. Journal of the American Chemical Society, 2017, 139: 4052-4061. |
54 | JEON H S, KUNZE S, SCHOLTEN F, et al. Prism-shaped Cu nanocatalysts for electrochemical CO2 reduction to ethylene[J]. ACS Catalysis, 2018, 8: 531-535. |
55 | YANG H, KACZUR J J, SAJJAD S D, et al. Electrochemical conversion of CO2 to formic acid utilizing Sustainion™ membranes[J]. Journal of CO2 Utilization, 2017, 20: 208-217. |
56 | ALBO J, IRABIEN A. Cu2O-loaded gas diffusion electrodes for the continuous electrochemical reduction of CO2 to methanol[J]. Journal of Catalysis, 2016, 343: 232-239. |
57 | CASTILLO A DEL, ALVAREZ-GUERRA M, IRABIEN A. Continuous electroreduction of CO2 to formate using Sn gas diffusion electrodes[J]. AIChE Journal, 2014, 60: 3557-3564. |
58 | SEBASTIAN D, PALELLA A, BAGLIO V, et al. CO2 reduction to alcohols in a polymer electrolyte membrane co-electrolysis cell operating at low potentials[J]. Electrochimica Acta, 2017, 241: 28-40. |
59 | NARAYANAN S R, HAINES B, SOLER J, et al. Electrochemical conversion of carbon dioxide to formate in alkaline polymer electrolyte membrane cells[J]. Journal of the Electrochemical Society, 2011, 158: A167-A173. |
60 | WU J, LIU M, SHARMA P P, et al. Incorporation of nitrogen defects for efficient reduction of CO2 via two-electron pathway on three-dimensional graphene foam[J]. Nano Letters, 2016, 16: 466-470. |
61 | JIANG K, SIAHROSTAMI S, ZHENG T, et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction[J]. Energy & Environmental Science, 2018, 11: 893-903. |
[1] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[2] | Feiyue TAO, Huanran WANG, Ruixiong LI, Jing ZHAO, Gangqiang GE, Xin HE, Hao CHEN. Thermodynamic analysis of a combined heating and power system coupled with carbon dioxide energy storage utilizing environmental recooling [J]. Energy Storage Science and Technology, 2022, 11(5): 1492-1501. |
[3] | Lexuan LI, Yujie XU, Zhao YIN, Huan GUO, Xianrong ZHANG, Haisheng CHEN, Xuezhi ZHOU. Exergy destruction characteristics of a supercritical carbon-dioxide energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1824-1834. |
[4] | Can WANG, Pan MA, Guoliang ZHU, Yongchao MA, Pengcheng JI, Shuimiao WEI, Jian ZHAO, Zhishui YU. LIB long life graphite electrode: State-of-art development and perspective [J]. Energy Storage Science and Technology, 2021, 10(1): 59-67. |
[5] | ZHANG Xin, KONG Lingli, GAO Tengyue, LI Haitao, YAO Xiaohui, LI Fuxuan. Analysis and improvement of cycle performance for Ni-rich lithium ion battery [J]. Energy Storage Science and Technology, 2020, 9(3): 813-817. |
[6] | SUN Xingwei, WANG Longlong, JIANG Feng, MA Jun, ZHOU Xinhong, CUI Guanglei. Failure mechanisms and characterization techniques for solid state polymer lithium batteries [J]. Energy Storage Science and Technology, 2019, 8(6): 1024-1032. |
[7] | LIANG Dayu, BAO Tingting, GAO Tianhui, ZHANG Jian. Analysis of cycling performance failure of NMC811/SiO-C pouch cells with high specific energy [J]. Energy Storage Science and Technology, 2018, 7(3): 459-464. |
[8] | WANG Guanbang, ZHANG Xinrong. Thermoelectric energy storage system and applications using CO2 cycles [J]. Energy Storage Science and Technology, 2017, 6(6): 1239-. |
[9] | WANG Sihui, XU Zhongling, DU Rui, MENG Huanping, LIU Yong, LIU Na, LIANG Chengdu. Degradation study of Ni-rich NCM batteries operated at high tempertures [J]. Energy Storage Science and Technology, 2017, 6(4): 770-775. |
[10] | SONG Pengxiang, ZHAO Bo, YANG Cenyu, WANG Le, JIN Yi, YANG Shihui. An assessment of the use of fuel chemicals synthesized from captured carbon dioxide for renewable electricity storage [J]. Energy Storage Science and Technology, 2016, 5(1): 78-84. |
[11] | XIE Jia, PENG Wen, YANG Xulai. The cycle life investigation for spinel LiNi0.5Mn1.5O4 full cells [J]. Energy Storage Science and Technology, 2014, 3(6): 624-628. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||