Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (6): 1775-1783.doi: 10.19799/j.cnki.2095-4239.2020-0133
• Energy Storage Materials and Devices • Previous Articles Next Articles
Zhao LI1(), Baorang LI2(), Liu CUI1, Xiaoze DU3()
Received:
2019-04-02
Revised:
2020-04-23
Online:
2020-11-05
Published:
2020-10-28
Contact:
Baorang LI,Xiaoze DU
E-mail:zhaoli@ncepu.edu.cn;libr@ ncepu.edu.cn;duxz@ ncepu.edu.cn
CLC Number:
Zhao LI, Baorang LI, Liu CUI, Xiaoze DU. Stability of the thermal performances of molten salt-based nanofluid[J]. Energy Storage Science and Technology, 2020, 9(6): 1775-1783.
1 | ARTHUR O, KARIM M A. An investigation into the thermophysical and rheological properties of nanofluids for solar thermal applications[J]. Renewable & Sustainable Energy Reviews, 2016, 55: 739-755. |
2 | LENERT A, WANG E N. Optimization of nanofluid volumetric receivers for solar thermal energy conversion[J]. Solar Energy, 2012, 86(1): 253-265. |
3 | CHOI S U S, EASTMAN J A. Enhancing thermal conductivity of fluids with nanoparticles [R]. Argonne National Lab, IL (United States), 1995. |
4 | SHIN Donghyun, BANERJEE D. Effects of silica nanoparticles on enhancing the specific heat capacity of carbonate salt eutectic (work in progress)[J]. The International Journal of Structural Changes in Solids, 2010, 2(2): 25-31. |
5 | SHIN Donghyun, BANERJEE D. Experimental investigation of molten salt nanofluid for solar thermal energy application[C]//ASME/JSME 2011 8th Thermal Engineering Joint Conference, 2011. |
6 | SHIN Donghyun, BANERJEE D. Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications[J]. International Journal of Heat and Mass Transfer, 2011, 54(5/6): 1064-1070. |
7 | SHIN Donghyun, BANERJEE D. Enhanced specific heat of silica nanofluid[J]. Journal of Heat Transfer, 2011, 133(2): 024501. |
8 | DUDDA B, SHIN Donghyun. Effect of nanoparticle dispersion on specific heat capacity of a binary nitrate salt eutectic for concentrated solar power applications[J]. International Journal of Thermal Sciences, 2013, 69: 37-42. |
9 | SHIN Donghyun, BANERJEE D. Enhanced specific heat capacity of nanomaterials synthesized by dispersing silica nanoparticles in eutectic mixtures[J]. Journal of Heat Transfer, 2013, 135(3): 1-21. |
10 | SHIN Donghyun, BANERJEE D. Enhanced thermal properties of SiO2 nanocomposite for solar thermal energy storage applications[J]. International Journal of Heat Mass Transfer, 2015, 84: 898-902. |
11 | Joohyun SEO, SHIN Donghyun. Size effect of nanoparticle on specific heat in a ternary nitrate (LiNO3-NaNO3-KNO3) salt eutectic for thermal energy storage[J]. Applied Thermal Engineering, 2016, 102: 144-148. |
12 | MOSTAFAVI A, ERUVARAM V K, SHIN Donghyun. Experimental study of thermal performance enhancement of molten salt nanomaterials [C]//ASME 2018 Power Conference collocated with the ASME 2018 12th International Conference on Energy Sustainability and the ASME 2018 Nuclear Forum, 2018. |
13 | QIAO Geng, LASFARGUES M, ALEXIADIS A, et al. Simulation and experimental study of the specific heat capacity of molten salt based nanofluids[J]. Applied Thermal Engineering, 2017, 111: 1517-1522. |
14 | JIANG Zhu, PALACIOS A, LEI Xianzhang, et al. Novel key parameter for eutectic nitrates based nanofluids selection for concentrating solar power (CSP) systems[J]. Applied Energy, 2019, 235: 529-542. |
15 | SONG Weilong, LU Yuanwei, WU Yuting, et al. Effect of SiO2 nanoparticles on specific heat capacity of low-melting-point eutectic quaternary nitrate salt[J]. Solar Energy Materials Solar Cells, 2018, 179: 66-71. |
16 | CHIERUZZI M, CERRITELLI G F, MILIOZZI A, et al. Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage[J]. Nanoscale Research Letters, 2013, 8(1): 448. |
17 | PEIRO G, PRIETO C, GASIA J, et al. Two-tank molten salts thermal energy storage system for solar power plants at pilot plant scale: lessons learnt and recommendations for its design, start-up and operation[J]. Renewable Energy, 2018, 121: 236-248. |
18 | ANDREU-CABEDO P, MONDRAGON R, HERNANDEZ L, et al. Increment of specific heat capacity of solar salt with SiO2 nanoparticles[J]. Nanoscale Research Letters, 2014, 9: 582. |
19 | CHEN Yongsheng, HUANG Ying, LI Kungang. Temperature effect on the aggregation kinetics of CeO2 nanoparticles in monovalent and divalent electrolytes[J]. Journal of Environmental & Analytical Toxicology, 2012, 2(7): 158-162. |
20 | HU Yanwei, HE Yurong, ZHANG Zhenduo, et al. Enhanced heat capacity of binary nitrate eutectic salt-silica nanofluid for solar energy storage[J]. Solar Energy Materials Solar Cells, 2019, 192: 94-102. |
21 | MADATHIL P K, BALAGI N, SAHA P, et al. Preparation and characterization of molten salt based nanothermic fluids with enhanced thermal properties for solar thermal applications[J]. Applied Thermal Engineering, 2016, 109: 901-905. |
22 | HU Yanwei, HE Yurong, ZHANG Zhenduo, et al. Effect of Al2O3 nanoparticle dispersion on the specific heat capacity of a eutectic binary nitrate salt for solar power applications[J]. Energy Conversion Management, 2017, 142: 366-373. |
23 | CHEN Xia, WU Yuting, ZHANG Ludi, et al. Experimental study on the specific heat and stability of molten salt nanofluids prepared by high-temperature melting[J]. Solar Energy Materials Solar Cells, 2018, 176: 42-48. |
24 | HAO Tian. Exploring the charging mechanisms in non-aqueous multiphase surfactant solutions, emulsions and colloidal systems via conductivity behaviors predicted with eyring's rate process theory[J]. Physical Chemistry Chemical Physics, 2016, 18(1): 476-491. |
25 | MAHMOUD B H, FAIRWEATHER M, MORTIMER L F, et al. Prediction of stability and thermal conductivity of nanofluids for thermal energy storage applications[J]. Computer Aided Chemical Engineering, 2018, 43: 61-66. |
26 | 姚远, 陈颖, 陆振能, 等. 纳米流体制备技术与组成结构的研究进展[J]. 流体机械, 2016, 44(11): 41-48. |
YAO Yuan, CHEN Ying, LU Zhenneng, et al. Research progress of preparation and composition of nanofluids[J]. Fluid Machinery, 2016, 44(11): 41-48. |
[1] | Baocun DU, Lijuan HUANG, Yonggang LEI, Chongfang SONG, Fei WANG. Dynamic study on the thermal and stress performances of the molten salt packed-bed thermal storage tank [J]. Energy Storage Science and Technology, 2022, 11(7): 2141-2150. |
[2] | Hongtao LI, Shuai ZHANG, Xudong LI, Yunguang JI, Mingxu SUN, Xin LI. Application of single tank energy storage and heat exchange system in hot air non-woven fabric process [J]. Energy Storage Science and Technology, 2022, 11(7): 2250-2257. |
[3] | XIAO Zhexi, LU Feng, LIN Xianqing, ZHANG Chenxi, BAI Haolong, YU Chunhui, HE Ziying, JIANG Hairong, WEI Fei. Mass production of SiO x @C anode material in gas-solid fluidized bed [J]. Energy Storage Science and Technology, 2022, 11(6): 1739-1748. |
[4] | FENG Jinxin, LING Ziye, FANG Xiaoming, ZHANG Zhengguo. Research progress on phase-change emulsions [J]. Energy Storage Science and Technology, 2022, 11(6): 1968-1979. |
[5] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[6] | Tiezhu GUO, Di ZHOU, Chuanfang ZHANG. Strategies for improving MXene colloidal stability and impact on their supercapacitor performance [J]. Energy Storage Science and Technology, 2022, 11(4): 1165-1174. |
[7] | Ying SUN, Qin ZHAO, Bosi YIN, Tianyi MA. Performance of PTCDI//δ-MnO2 aqueous ammonium-ion battery [J]. Energy Storage Science and Technology, 2022, 11(4): 1110-1120. |
[8] | Yezhou HU, Shuang WANG, Tao SHEN, Ye ZHU, Deli WANG. Recent progress in confined noble-metal electrocatalysts for oxygen reduction reaction [J]. Energy Storage Science and Technology, 2022, 11(4): 1264-1277. |
[9] | Di LIU, Tiantian ZHANG, Yuwei PENG, Xiaomei TANG, Dan WANG, Chengxiong MAO. Shaft modeling and oscillation analysis for expansion process of compressed air energy storage system [J]. Energy Storage Science and Technology, 2022, 11(2): 563-572. |
[10] | Tianxin XU, Xikun TIAN, Jun YAN, Qiang YE, Changying ZHAO. Thermochemical energy storage reaction performance of CaCO3 with TiO2 doping [J]. Energy Storage Science and Technology, 2022, 11(1): 1-8. |
[11] | Zhuo XU, Lili ZHENG, Bing CHEN, Tao ZHANG, Xiuling CHANG, Shouli WEI, Zuoqiang DAI. Overview of research on composite electrolytes for solid-state batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2117-2126. |
[12] | Xiangyu JIA, Junshui WANG, Yang XU, Kai ZHANG. Rubbing behavior research of flywheel rotor for energy storage in view of influence of contact parameters [J]. Energy Storage Science and Technology, 2021, 10(5): 1643-1649. |
[13] | Dingzhang GUO, Zhao YIN, Xuezhi ZHOU, Yujie XU, Yong SHENG, Wenhui SUO, Haisheng CHEN. Status and prospect of gas storage device in compressed air energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1486-1493. |
[14] | Cong HE, Yuanwei LU, Wenbing SONG, Xiaotong CHEN, Yuting WU, Zhansheng FAN. The phase diagram prediction and experimental study of ternary same cation systems [J]. Energy Storage Science and Technology, 2021, 10(5): 1729-1734. |
[15] | Xiaotong CHEN, Yuanwei LU, Cong HE, Wenbing SONG, Yuting WU, Guichun YANG. Heat-release stability of single tank molten salt heat storage system based on continuous regulation of heat exchange area [J]. Energy Storage Science and Technology, 2021, 10(5): 1753-1759. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||