Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (3): 914-924.doi: 10.19799/j.cnki.2095-4239.2021.0070
Previous Articles Next Articles
Shangsen CHI1(), Yidong JIANG1, Qingrong WANG1, Ziwei YE1, Kai YU1, Jun MA1, Jun JIN3, Jun WANG1, Chaoyang WANG2, Zhaoyin WEN3, Yonghong DENG1(
)
Received:
2021-02-28
Revised:
2021-03-18
Online:
2021-05-05
Published:
2021-04-30
Contact:
Yonghong DENG
E-mail:chiss@sustech.edu.cn;yhdeng08@163.com
CLC Number:
Shangsen CHI, Yidong JIANG, Qingrong WANG, Ziwei YE, Kai YU, Jun MA, Jun JIN, Jun WANG, Chaoyang WANG, Zhaoyin WEN, Yonghong DENG. The liquid electrolyte modified interface between garnet-type solid-state electrolyte and lithium anode[J]. Energy Storage Science and Technology, 2021, 10(3): 914-924.
Fig. 5
(a) XRD patterns of LLZTO garnet electrolyte surface without and with dripping electrolyte; (b) XPS full spectrum of LLZTO garnet electrolyte surface after dripping electrolyte; (b~d) high-resolution spectra of C(c), P(d) and F(e) elements in XPS full spectrum after dripping electrolyte on the LLZTO garnet electrolyte surface"
Fig. 7
(a) schematic diagram of Li/LE-LLZTO-LE/Li symmetric battery configuration; (b) galvanostatic cycling performance of Li/LE-LLZTO-LE/Li symmetric battery at 0.05 mA·cm-2 and 0.1 mA·cm-2; (c) Nyquist plots of Li/LE-LLZTO-LE/Li symmetric battery at different temperatures before cycle; (d) Nyquist plots of Li/LE-LLZTO-LE/Li symmetric battery at different temperatures after cycle; (e) comparison of areal specific resistance of garnet electrolyte and lithium metal (Li/LE/LLZTO) at different temperatures before and after symmetric battery cycle"
Fig. 8
(a) galvanostatic cycling performance of Li/LE-LLZTO-LE/Li symmetric battery at 0.1 mA·cm-2; (b) Nyquist plots of Li/LE-LLZTO-LE/Li symmetric batteries at 30 ℃ with different standing times before cycling; (c) Nyquist plots of Li/LE-LLZTO-LE/Li symmetric batteries at 80 ℃ with different standing times before cycling; (d) comparison of areal specific resistance of garnet electrolyte and lithium metal (Li/LE/LLZTO) at 30 ℃ and 80 ℃ with different standing times before cycling"
Table 4
Fitting results of the EIS spectra of the Li/LE-LLZTO-LE/Li symmetric cells before cycling at different temperatures and different standing time"
静置时间/h | 温度/°C | Rb/Ω·cm2 | R1/Ω·cm2 | CPE1/F·cm2 | R2/Ω·cm2 | CPE2/F·cm2 |
---|---|---|---|---|---|---|
1 | 30 | 83.95 | 51.98 | 0.9975 | 256.8 | 0.7789 |
80 | 13.03 | 1.139 | 1.404 | 2.656 | 1.014 | |
24 | 30 | 215.96 | 49.34 | 0.92438 | 560.66 | 0.92438 |
80 | 15.06 | 2.524 | 1.114 | 7.623 | 0.80257 | |
72 | 30 | 235.07 | 50.16 | 0.92267 | 565.46 | 0.79041 |
80 | 15.78 | 2.649 | 1.116 | 9.031 | 0.76511 |
1 | WINTER M, BARNETT B, XU K. Before Li ion batteries[J]. Chemical Reviews, 2018, 118(23): 11433-11456. |
2 | CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303. |
3 | LI M, WANG C S, CHEN Z W, et al. New concepts in electrolytes[J]. Chemical Reviews, 2020, 120(14): 6783-6819. |
4 | JANEK J, ZEIER W G. A solid future for battery development[J]. Nature Energy, 2016, 1: doi: 10.1038/nenergy.2016.141. |
5 | CHI S S, LIU Y C, ZHAO N, et al. Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries[J]. Energy Storage Materials, 2019, 17: 309-316. |
6 | CHEN L, LI Y T, LI S P, et al. PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic"[J]. Nano Energy, 2018, 46: 176-184. |
7 | WANG C W, FU K, KAMMAMPATA S P, et al. Garnet-type solid-state electrolytes: Materials, interfaces, and batteries[J]. Chemical Reviews, 2020, 120(10): 4257-4300. |
8 | MURUGAN R, THANGADURAI V, WEPPNER W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J]. Angewandte Chemie-International Edition, 2007, 46(41): 7778-7781. |
9 | FU K K, GONG Y, LIU B, et al. Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface[J]. Science Advances, 2017, 3(4): doi: 10.1126/sciadv.1601659. |
10 | LUO W, GONG Y H, ZHU Y Z, et al. Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte[J]. Journal of the American Chemical Society, 2016, 138(37): 12258-12262. |
11 | HAN X, GONG Y, FU K K, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries[J]. Nature Materials, 2017, 16(5): 572-579. |
12 | FU K K, GONG Y H, FU Z Z, et al. Transient behavior of the metal interface in lithium metal-garnet batteries[J]. Angewandte Chemie-International Edition, 2017, 56(47): 14942-14947. |
13 | ZHOU W D, WANG S F, LI Y T, et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte[J]. Journal of the American Chemical Society, 2016, 138(30): 9385-9388. |
14 | RUAN Y D, LU Y, LI Y P, et al. A 3D cross-linking lithiophilic and electronically insulating interfacial engineering for garnet-type solid-state lithium batteries[J]. Advanced Functional Materials, 2021, 31(5): doi: 10.1002/afma.202007815. |
[1] | Yun LI, Wang YANG, Yongfeng LI. Synthesis of petroleum asphalt-based MoS2/porous carbon material and its Li-storage performance [J]. Energy Storage Science and Technology, 2022, 11(3): 1026-1034. |
[2] | Zhiwei ZHAO, Zhi YANG, Zhangquan PENG. Application of time-of-flight secondary ion mass spectrometry in lithium-based rechargeable batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 781-794. |
[3] | Zhao DU, Kang YANG, Gao SHU, Pan WEI, Xiaohu YANG. Experimental Study on the Heat Storage and Release of the Solid-Liquid Phase Change in Metal-Foam-Filled Tube [J]. Energy Storage Science and Technology, 2022, 11(2): 531-537. |
[4] | Saisai ZHANG, Hailei ZHAO. Electrode/electrolyte interfaces in Li7La3Zr2O12 garnet-based solid-state lithium metal battery: Challenges and progress [J]. Energy Storage Science and Technology, 2021, 10(3): 863-871. |
[5] | Xinxin ZHU, Wei JIANG, Zhengwei WAN, Shu ZHAO, Zeheng LI, Liguang WANG, Wenbin NI, Min LING, Chengdu LIANG. Research progress in electrolyte and interfacial issues of solid lithium sulfur batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 848-862. |
[6] | Yue MU, Yun DU, Hai MING, Songtong ZHANG, Jingyi QIU. Methods of investigating structural evolution and interface behavior in cathode materials for Li-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(1): 7-26. |
[7] | Jingjing ZHANG, Xiaoling CUI, Dongni ZHAO, Li YANG, Jie WANG. Effects of concentrated electrolytes on the electrode /electrolyte interface [J]. Energy Storage Science and Technology, 2021, 10(1): 143-149. |
[8] | Manman JIA, Long ZHANG. Recent development on sulfide solid electrolytes for solid-state sodium batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1266-1283. |
[9] | Linfeng PENG, Huanhuan JIA, Qing DING, Yuming ZHAO, Jia XIE, Shijie CHENG. Research progress of solid-state sodium batteries using inorganic sodium ion conductors [J]. Energy Storage Science and Technology, 2020, 9(5): 1370-1382. |
[10] | Mengying MA, Huilin PAN, Yongsheng HU. Progress in electrolyte research for non-aqueous sodium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1234-1250. |
[11] | Jie WU, Xiaobiao JIANG, Yang YANG, Yongmin WU, Lei ZHU, Weiping TANG. Progress of NASICON-structured Li1+xAlxTi2-x(PO4)3 (0 ≤x≤ 0.5) solid electrolyte [J]. Energy Storage Science and Technology, 2020, 9(5): 1472-1488. |
[12] | LU Tianjiao, HUANG Zhimei, XIE Meilan, SHEN Yue. Lithium anode stabilization via AgF pretreatment and its application in a Li-oxygen battery [J]. Energy Storage Science and Technology, 2020, 9(3): 807-812. |
[13] | WANG Weikun, WANG Anbang, JIN Zhaoqing. Challenges on practicalization of lithium sulfur batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 593-597. |
[14] | MAO Shulan, WU Qian, WANG Zhuoya, LU Yingying. Research progress on high-voltage electrolytes for ternary NCM lithium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 538-550. |
[15] | WANG Chenglin, QU Shiji, LI Jingze. Protective mechanism of the Li alloy film-buffered Li metal anode [J]. Energy Storage Science and Technology, 2020, 9(2): 368-374. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 795
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 710
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||