1 |
FATHIMA A H, PALANISAMY K. Hybrid-renewable energy systems in microgrids: Renewable systems and energy storages for hybrid systems[M]//USA: Elsevier, 2018: 147-164.
|
2 |
BUDT M, WOLF D, SPAN R, et al. A review on compressed air energy storage: Basic principles, past milestones and recent developments[J]. Applied Energy, 2016, 170: 250-268.
|
3 |
纪律, 陈海生, 张新敬, 等. 压缩空气储能技术研发现状及应用前景[J]. 高科技与产业化, 2018(4): 52-58.
|
|
JI L, CHEN H S, ZHANG X J, et al. Development status and application prospects of compressed air energy storage technology[J]. High-Technology & Industrialization, 2018(4): 52-58.
|
4 |
何文凯, 陈紫轩, 张轶, 等. 高压气动系统负载容腔压力伺服控制仿真研究[J]. 液压与气动, 2019(12): 22-27.
|
|
HE W K, CHEN Z X, ZHANG Y, et al. Simulation of load-vessel pressure control for high pressure pneumatic system[J]. Chinese Hydraulics & Pneumatics, 2019(12): 22-27.
|
5 |
李文, 陈海生, 王星, 等. 一种适用于CAES系统高压膨胀机的组合式喷嘴配气结构: CN109209524A[P]. [2019-01-15].
|
|
LI W, CHEN H S, WANG X, et al. The invention relates to a combined nozzle distribution structure suitable for high pressure expander in CAES system: CN109209524A[P]. [2019-01-15].
|
6 |
刘嘉豪, 王星, 张雪辉, 等. 压缩空气储能系统膨胀机调节级配气特性数值研究[J]. 储能科学与技术, 2020, 9(2): 425-434.
|
|
LIU J H, WANG X, ZHANG X H, et al. Numerical study on the air distribution characteristics of the turbine regulating stage in a compressed air energy storage system[J]. Energy Storage Science and Technology, 2020, 9(2): 425-434.
|
7 |
ZHOU S H, HE Y, CHEN H S, et al. Performance analysis of a novel adiabatic compressed air energy system with ejectors enhanced charging process[J]. Energy, 2020, 205: doi:10.1016/j.energy.2020.118050.
|
8 |
GUO Z G, DENG G Y, FAN Y C, et al. Performance optimization of adiabatic compressed air energy storage with ejector technology[J]. Applied Thermal Engineering, 2016, 94: 193-197.
|
9 |
文贤馗, 李盼, 钟晶亮, 等. 基于喷气射流装置的压缩空气储能透平进气调节系统[J]. 汽轮机技术, 2020, 62(3): 173-175, 208.
|
|
WEN X K, LI P, ZHONG J L, et al. The air intake regulation system of turbines of compressed air energy storage system based on jet device[J]. Turbine Technology, 2020, 62(3): 173-175, 208.
|
10 |
文贤馗, 钟晶亮, 卿绍伟, 等. 含射气抽气器配气机构对蓄热式压缩空气储能系统释能功率的影响[J]. 节能技术, 2020, 38(3): 240-246.WEN X K, ZHONG J L, QING S W, et al. Effect of valve train with ejector on the power output of thermal-storage compressed air energy storage system[J]. Energy Conservation Technology, 2020, 38(3): 240-246.
|
11 |
CHEN L X, HU P, ZHAO P P, et al. A novel throttling strategy for adiabatic compressed air energy storage system based on an ejector[J]. Energy Conversion and Management, 2018, 158: 50-59.
|
12 |
HAN Z H, GUO S C. Investigation of discharge characteristics of a tri-generative system based on advanced adiabatic compressed air energy storage[J]. Energy Conversion and Management, 2018, 176: 110-122.
|
13 |
郭欢, 徐玉杰, 张新敬, 等. 蓄热式压缩空气储能系统变工况特性[J]. 中国电机工程学报, 2019, 39(5): 1366-1377.
|
|
GUO H, XU Y J, ZHANG X J, et al. Off-design performance of compressed air energy storage system with thermal storage[J]. Proceedings of the Chinese Society for Electrical Engineering, 2019, 39(5): 1366-1377.
|
14 |
HE W, WANG J H. Optimal selection of air expansion machine in compressed air energy storage: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 87: 77-95.
|
15 |
程浙武. 低温绝热压缩空气储能系统变工况性能分析及设计优化研究[D]. 杭州: 浙江大学, 2019.
|
|
CHENG Z W. Research on on off-design performance analysis and design optimization of low-temperature adiabatic compressed air energy storage system[D]. Hangzhou: Zhejiang University, 2019.
|
16 |
SCIACOVELLI A, LI Y L, CHEN H S, et al. Dynamic simulation of adiabatic compressed air energy storage (A-CAES) plant with integrated thermal storage-link between components performance and plant performance[J]. Applied Energy, 2017, 185: 16-28.
|
17 |
MOZAYENI H, WANG X L, NEGNEVITSKY M. Dynamic analysis of a low-temperature adiabatic compressed air energy storage system[J]. Journal of Cleaner Production, 2020, 276: doi:10.1016/j.jclepro.2020.124323.
|
18 |
黄景坚, 赵攀, 王佩姿, 等. 热电共蓄式压缩空气储能系统特性研究[J]. 工程热物理学报, 2020, 41(6): 1300-1307.
|
|
HUANG J J, ZHAO P, WANG P Z, et al. Performance analysis of a high temperature hybrid compressed air energy storage system[J]. Journal of Engineering Thermophysics, 2020, 41(6): 1300-1307.
|
19 |
HE Y, WANG M, CHEN H S, et al. Thermodynamic research on compressed air energy storage system with turbines under sliding pressure operation[J]. Energy, 2021, 222: doi:10.1016/j.energy.2021.119978.
|
20 |
CHEN Y, CAI G B, WU Z. Modularization modeling and simulation of turbine test rig main test system[J]. Applied Mathematical Modelling, 2011, 35(11): 5382-5399.
|
21 |
CHEN S, ZHU T, GAN Z X, et al. Optimization of operation strategies for a combined cooling, heating and power system based on adiabatic compressed air energy storage[J]. Journal of Thermal Science, 2020, 29(5): 1135-1148.
|
22 |
张娜, 林汝谋, 蔡睿贤. 压气机特性通用数学表达式[J]. 工程热物理学报, 1996(1): 21-24.
|
|
ZHANG N, LIN R M, CAI R X. General formulas for axial compressor performance estimation[J]. Journal of Engineering Thermophysics, 1996(1): 21-24.
|
23 |
卢韶光, 林汝谋. 燃气透平稳态全工况特性通用模型[J]. 工程热物理学报, 1996(4): 404-407.
|
|
LU S G, LIN R M. Gas turbine steady-state design and off-design characteristic general model[J]. Journal of Engineering Thermophysics, 1996(4): 404-407.
|