1 |
刘英军, 刘亚奇, 张华良, 等. 我国储能政策分析与建议[J]. 储能科学与技术, 2021, 10(4): 1463-1473.
|
|
LIU Y J, LIU Y Q, ZHANG H L, et al. Energy storage policy analysis and suggestions in China[J]. Energy Storage Science and Technology, 2021, 10(4): 1463-1473.
|
2 |
JIAO K, XUAN J, DU Q, et al. Designing the next generation of proton-exchange membrane fuel cells[J]. Nature, 2021, 595(7867): 361-369.
|
3 |
VARCOE J R, SLADE R C T. Prospects for alkaline anion-exchange membranes in low temperature fuel cells[J]. Fuel Cells, 2005, 5(2): 187-200.
|
4 |
WANG Y J, ZHAO N N, FANG B Z, et al. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: Particle size, shape, and composition manipulation and their impact to activity[J]. Chemical Reviews, 2015, 115(9): 3433-3467.
|
5 |
TIAN X L, LU X F, XIA B Y, et al. Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies[J]. Joule, 2020, 4(1): 45-68.
|
6 |
EHELEBE K, KNÖPPEL J, BIERLING M, et al. Platinum dissolution in realistic fuel cell catalyst layers[J]. Angewandte Chemie (International Ed in English), 2021, 60(16): 8882-8888.
|
7 |
GAO X H, YU G T, ZHENG L R, et al. Strong electron coupling from the sub-nanometer Pd clusters confined in porous ceria nanorods for highly efficient electrochemical hydrogen evolution reaction[J]. ACS Applied Energy Materials, 2019, 2(2): 966-973.
|
8 |
LI Y J, PEI W, HE J T, et al. Hybrids of PtRu nanoclusters and black phosphorus nanosheets for highly efficient alkaline hydrogen evolution reaction[J]. ACS Catalysis, 2019, 9(12): 10870-10875.
|
9 |
ZHENG F Q, ZHANG C M, GAO X H, et al. Immobilizing Pd nanoclusters into electronically conductive metal-organic frameworks as bi-functional electrocatalysts for hydrogen evolution and oxygen reduction reactions[J]. Electrochimica Acta, 2019, 306: 627-634.
|
10 |
YAN W, TANG Z H, WANG L K, et al. PdAu alloyed clusters supported by carbon nanosheets as efficient electrocatalysts for oxygen reduction[J]. International Journal of Hydrogen Energy, 2017, 42(1): 218-227.
|
11 |
MATHEW A, PRADEEP T. Noble metal clusters: Applications in energy, environment, and biology[J]. Particle & Particle Systems Characterization, 2014, 31(10): 1017-1053.
|
12 |
LIANG Z Z, KONG N N, YANG C X, et al. Highly curved nanostructure-coated co, N-doped carbon materials for oxygen electrocatalysis[J]. Angewandte Chemie International Edition, 2021, 60(23): 12759-12764.
|
13 |
TANG Z H, WU W, WANG K. Oxygen reduction reaction catalyzed by noble metal clusters[J]. Catalysts, 2018, 8(2): 65.
|
14 |
YIN H, TANG H, WANG D, et al. Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction[J]. ACS Nano, 2012, 6(9): 8288-8297.
|
15 |
WANG L K, TANG Z H, YAN W, et al. Porous carbon-supported gold nanoparticles for oxygen reduction reaction: Effects of nanoparticle size[J]. ACS Applied Materials & Interfaces, 2016, 8(32): 20635-20641.
|
16 |
WANG Q, WANG L, TANG Z, et al. Oxygen reduction catalyzed by gold nanoclusters supported on carbon nanosheets[J]. Nanoscale, 2016, 8(12): 6629-6635.
|
17 |
ZHANG S Z, WANG L K, FANG L P, et al. A facile method to prepare ultrafine Pd nanoparticles embedded into N-doped porous carbon nanosheets as highly efficient electrocatalysts for oxygen reduction reaction[J]. Journal of the Electrochemical Society, 2020, 167(5): 054508.
|
18 |
SONG K P, ZOU Z J, WANG D L, et al. Microporous organic polymers derived microporous carbon supported Pd catalysts for oxygen reduction reaction: Impact of framework and heteroatom[J]. The Journal of Physical Chemistry C, 2016, 120(4): 2187-2197.
|
19 |
MONDAL S, RAJ C R. Electrochemical dealloying-assisted surface-engineered Pd-based bifunctional electrocatalyst for formic acid oxidation and oxygen reduction[J]. ACS Applied Materials & Interfaces, 2019, 11(15): 14110-14119.
|
20 |
ZHOU W J, LI M, DING O L, et al. Pd particle size effects on oxygen electrochemical reduction[J]. International Journal of Hydrogen Energy, 2014, 39(12): 6433-6442.
|
21 |
XU G R, HAN C C, ZHU Y Y, et al. PdCo alloy nanonetworks-polyallylamine inorganic-organic nanohybrids toward the oxygen reduction reaction[J]. Advanced Materials Interfaces, 2018, 5(4): 1701322.
|
22 |
LUO M, ZHAO Z, ZHANG Y, et al. PdMo bimetallene for oxygen reduction catalysis[J]. Nature, 2019, 574(7776): 81-85.
|
23 |
YANG Y, CHEN G, ZENG R, et al. Combinatorial studies of palladium-based oxygen reduction electrocatalysts for alkaline fuel cells[J]. Journal of the American Chemical Society, 2020, 142(8): 3980-3988.
|
24 |
CHEN D, LI C, LIU H, et al. Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions[J]. Scientific Reports, 2015, 5: 11949.
|
25 |
PARK J W, SHUMAKER-PARRY J S. Strong resistance of citrate anions on metal nanoparticles to desorption under thiol functionalization[J]. ACS Nano, 2015, 9(2): 1665-1682.
|