Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (6): 2020-2027.doi: 10.19799/j.cnki.2095-4239.2021.0360
• Special issue of hydrogen energy and fuel cell • Previous Articles Next Articles
Wang YU(), Chao SUN, QI Ji, Liuzhen BIAN(), Jihua PENG, Jun PENG, Shengli AN
Received:
2021-07-20
Revised:
2021-08-03
Online:
2021-11-05
Published:
2021-11-03
CLC Number:
Wang YU, Chao SUN, QI Ji, Liuzhen BIAN, Jihua PENG, Jun PENG, Shengli AN. Electrochemical performance of Sr2-xFe1.5Mo0.5O6-δ air electrode for solid oxide cell[J]. Energy Storage Science and Technology, 2021, 10(6): 2020-2027.
1 | PARK J H, JUNG C H, KIM K J, et al. Enhancing bifunctional electrocatalytic activities of oxygen electrodes via incorporating highly conductive Sm3+ and Nd3+ double-doped ceria for reversible solid oxide cells[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 2496-2506. |
2 | ZHANG W W, WANG H C, GUAN K, et al. Enhanced anode performance and coking resistance by in situ exsolved multiple-twinned co-Fe nanoparticles for solid oxide fuel cells[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 461-473. |
3 | TONG X F, OVTAR S, BRODERSEN K, et al. A 4 × 4 cm2 nanoengineered solid oxide electrolysis cell for efficient and durable hydrogen production[J]. ACS Applied Materials & Interfaces, 2019, 11(29): 25996-26004. |
4 | MALZBENDER J, STEINBRECH R W, SINGHEISER L. A review of advanced techniques for characterising SOFC behaviour[J]. Fuel Cells, 2009, 9(6): 785-793. |
5 | WACHSMAN E D, LEE K T. Lowering the temperature of solid oxide fuel cells[J]. Science, 2011, 334(6058): 935-939. |
6 | NESARAJ A. S. Recent developments in solid oxide fuel cell technology-A review[J]. Journal of Scientific & Industrial Research, 2010, 69(3): 169-176. |
7 | ZHANG Y, CHEN B, GUAN D, et al. Thermal-expansion offset for high-performance fuel cell cathodes[J]. Nature, 2021, 591(7849): 246-251. |
8 | JI Q Q, BI L, ZHANG J T, et al. The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction[J]. Energy & Environmental Science, 2020, 13(5): 1408-1428. |
9 | YOO S, JUN A, JU Y W, et al. Development of double-perovskite compounds as cathode materials for low-temperature solid oxide fuel cells[J]. Angewandte Chemie International Edition, 2014, 53(48): 13064-13067. |
10 | KIEBACH R, ZHANG W W, ZHANG W, et al. Stability of La0.6Sr0.4Co0.2Fe0.8O3/Ce0.9Gd0.1O2 cathodes during sintering and solid oxide fuel cell operation[J]. Journal of Power Sources, 2015, 283: 151-161. |
11 | BONTURIM E, MAZZOCCHI V L, PARENTE C B R, et al. Oxygen stoichiometry of Ba0.50Sr0.50Co0.80Fe0.20O3-δ obtained by EDTA-citrate method and measured by X-ray and neutron diffraction[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 306(3): 769-773. |
12 | DAI N N, WANG Z H, LOU Z L, et al. One-step synthesis of high performance Sr2Fe1.5Mo0.5O6-Sm0.2Ce0.8O1.9 composite cathode for intermediate-temperature solid oxide fuel cells using a self-combustion technique[J]. Journal of Power Sources, 2012, 217: 519-523. |
13 | ZHANG L M, YANG S Y, ZHANG S Z. A novel perovskite oxychloride as a high performance cathode for protonic ceramic fuel cells[J]. Journal of Power Sources, 2019, 440: 227125. |
14 | DAI N N, FENG J, WANG Z H, et al. Synthesis and characterization of B-site Ni-doped perovskites Sr2Fe1.5-xNixMo0.5O6-δ (x = 0, 0.05, 0.1, 0.2, 0.4) as cathodes for SOFCs[J]. Journal of Materials Chemistry A, 2013, 1(45): 14147-14153. |
15 | ZHEN S Y, SUN W, TANG G Z, et al. Evaluation of strontium-site-deficient Sr2Fe1.4Co0.1Mo0.5O6-δ-based perovskite oxides as intermediate temperature solid oxide fuel cell cathodes[J]. International Journal of Hydrogen Energy, 2016, 41(22): 9538-9546. |
16 | NI W J, ZHU T L, CHEN X Y, et al. Stable, efficient and cost-competitive Ni-substituted Sr(Ti, Fe)O3 cathode for solid oxide fuel cell: Effect of A-site deficiency[J]. Journal of Power Sources, 2020, 451: 227762. |
17 | YANG G Q, FENG J, SUN W, et al. The characteristic of strontium-site deficient perovskites SrxFe1.5Mo0.5O6-δ (x = 1.9-2.0) as intermediate-temperature solid oxide fuel cell cathodes[J]. Journal of Power Sources, 2014, 268: 771-777. |
18 | FENG J, QIAO J S, WANG W Y, et al. Development and performance of anode material based on A-site deficient Sr2-xFe1.4Ni0.1Mo0.5O6-δ perovskites for solid oxide fuel cells[J]. Electrochimica Acta, 2016, 215: 592-599. |
19 | BIAN L Z, WANG L J, CHEN N, et al. Enhanced performance of La0.7Sr0.3Fe0.9Ni0.1O3 cathode by partial substitution with Ce[J]. Ceramics International, 2017, 43(1): 982-987. |
20 | GOU Y J, LI G D, REN R Z, et al. Pr-doping motivating the phase transformation of the BaFeO3-δ perovskite as a high-performance solid oxide fuel cell cathode[J]. ACS Applied Materials & Interfaces, 2021, 13(17): 20174-20184. |
21 | DEKA D J, KIM J, GUNDUZ S, et al. Temperature-induced changes in the synthesis gas composition in a high-temperature H2O and CO2 co-electrolysis system[J]. Applied Catalysis A: General, 2020, 602: 117697. |
22 | TAI L W, NASRALLAH M M, ANDERSON H U, et al. Structure and electrical properties of La1-xSrxCo1-yFeyO3. Part 1. The system La0.8Sr0.2Co1-yFeyO3[J]. Solid State Ionics, 1995, 76(3/4): 259-271. |
23 | ZHAO H L, XU N S, CHENG Y F, et al. Investigation of mixed conductor BaCo0.7Fe0.3-xYxO3-δ with high oxygen permeability[J]. The Journal of Physical Chemistry C, 2010, 114(41): 17975-17981. |
24 | BARBUCCI A, VIVIANI M, PANIZZA M, et al. Analysis of the oxygen reduction process on SOFC composite electrodes[J]. Journal of Applied Electrochemistry, 2005, 35(4): 399-403. |
25 | PERRY MURRAY E, SEVER M J, BARNETT S A. Electrochemical performance of (La, Sr)(co, Fe)O3-(Ce, Gd)O3 composite cathodes[J]. Solid State Ionics, 2002, 148(1/2): 27-34. |
26 | YI S, SHEN Y N, ZHAO H L, et al. Electrochemical performance of La1.5Sr0.5Ni1-xFexO4+δ cathode for IT-SOFCs[J]. Electrochimica Acta, 2016, 219: 394-400. |
27 | SIEBERT E, HAMMOUCHE A, KLEITZ M. Impedance spectroscopy analysis of La1-xSritxMnO3-yttria-stabilized zirconia electrode kinetics[J]. Electrochimica Acta, 1995, 40(11): 1741-1753. |
28 | BIAN L Z, DUAN C C, WANG L J, et al. Electrochemical performance and stability of La0·5Sr0·5Fe0·9Nb0·1O3-δ symmetric electrode for solid oxide fuel cells[J]. Journal of Power Sources, 2018, 399: 398-405. |
29 | SHEN L Y, DU Z H, ZHANG Y, et al. Medium-Entropy perovskites Sr(FeαTiβCoγMnζ)O3-δ as promising cathodes for intermediate temperature solid oxide fuel cell[J]. Applied Catalysis B: Environmental, 2021, 295: 120264. |
30 | KIM J D, KIM G D, MOON J W, et al. Characterization of LSM-YSZ composite electrode by ac impedance spectroscopy[J]. Solid State Ionics, 2001, 143(3/4): 379-389. |
31 | ADLER S B. Mechanism and kinetics of oxygen reduction on porous La1-xSrxCoO3-δ electrodes[J]. Solid State Ionics, 1998, 111(1/2): 125-134. |
32 | BAUMANN F S, FLEIG J, HABERMEIER H U, et al. Impedance spectroscopic study on well-defined (La, Sr)(Co, Fe)O3-δ model electrodes[J]. Solid State Ionics, 2006, 177(11/12): 1071-1081. |
33 | LI Q, XIA T, SUN L P, et al. Electrochemical performance of novel cobalt-free perovskite SrFe0.7Cu0.3O3-δ cathode for intermediate temperature solid oxide fuel cells[J]. Electrochimica Acta, 2014, 150: 151-156. |
[1] | Xiaohua DENG, Zhu JANG, Chao CHEN, Dai DANG. Recent advances in zeolitic imidazolium-based metal-organic frameworks (ZIFs) and their derivatives as efficient cathode catalysts for zinc-air batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 964-981. |
[2] | Zhihao LI, Hao PENG, Yaqin CHEN. Neural network prediction model for temperature distribution of proton exchange membrane fuel cell membrane electrode assembly [J]. Energy Storage Science and Technology, 2021, 10(6): 2053-2059. |
[3] | Mingchang HU, Xueqing ZHOU, Xueyan HUANG, Jianjun XUE. Solvent-free fabrication of zinc-air electrodes and their battery performance [J]. Energy Storage Science and Technology, 2021, 10(6): 2090-2096. |
[4] | Yuxi WU, Tingting HAN, Ziheng XIE, Lin LI, Yanwen SONG, Jiacang LIANG, Jinjin ZHANG, Fangyong YU, Naitao YANG. Recent progress in direct carbon solid oxide fuel cells: Carbon fuels and reverse Boudouard reaction catalysts [J]. Energy Storage Science and Technology, 2021, 10(6): 1977-1986. |
[5] | Boya ZHANG, Bohong LIU, Yuanhang LI, Xin LIU, Qianfeng CHEN, Sanying HOU. Binary oxide modified catalyst preparation and self-humidifying performance [J]. Energy Storage Science and Technology, 2021, 10(6): 2013-2019. |
[6] | Lina ZHENG, Wenzhong WANG, Kaijie JIA, Shaofeng QIU, Haoyuan ZHU, Fangyong YU, Xiuxia MENG, Jinjin ZHANG, Naitao YANG. Three-dimensional printing technologies in the field of solid oxide fuel cells [J]. Energy Storage Science and Technology, 2021, 10(6): 1952-1962. |
[7] | Junsheng ZHENG, Ningning DAI, Kun ZHAO, Jingnan YU. Performance degradation analysis methods for fuel cell vehicles based on demonstration operations [J]. Energy Storage Science and Technology, 2021, 10(2): 577-585. |
[8] | Fenglai PEI, Yunhan OUYANG. Fuel cell electric performance and gas tightness attenuation under influence of enhanced road vibration spectrum [J]. Energy Storage Science and Technology, 2021, 10(2): 714-721. |
[9] | Junxiang ZHAI, Guangli HE, Zhuang XU, Congmin LIU. Experimental study on system efficiency of air-cooled proton exchange membrane fuel cell [J]. Energy Storage Science and Technology, 2020, 9(6): 1885-1889. |
[10] | Ziyue ZHU, Dongju FU, Jianjun CHEN, Bianrong ZENG. Research progress of non-precious metal bifunctional cathode electrocatalysts for zinc-air batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1489-1496. |
[11] | ZHAI Junxiang, HE Guangli, XIONG Yalin. Experimental study on hydrogen utilization of proton exchange membrane fuel cell system [J]. Energy Storage Science and Technology, 2020, 9(3): 684-687. |
[12] | LU Tianjiao, HUANG Zhimei, XIE Meilan, SHEN Yue. Lithium anode stabilization via AgF pretreatment and its application in a Li-oxygen battery [J]. Energy Storage Science and Technology, 2020, 9(3): 807-812. |
[13] | DONG Xu, DU Zhihong, ZHANG Yang, LI Keyun, ZHAO Hailei. SrFeF x O3- x - δ cathode with high catalytic activity for solid oxide fuel cells [J]. Energy Storage Science and Technology, 2020, 9(2): 415-424. |
[14] | WANG Chenglin, QU Shiji, LI Jingze. Protective mechanism of the Li alloy film-buffered Li metal anode [J]. Energy Storage Science and Technology, 2020, 9(2): 368-374. |
[15] | . [J]. Energy Storage Science and Technology, 2020, 9(1): 40-56. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||