Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (6): 2013-2019.doi: 10.19799/j.cnki.2095-4239.2021.0386
• Special issue of hydrogen energy and fuel cell • Previous Articles Next Articles
Boya ZHANG(), Bohong LIU, Yuanhang LI, Xin LIU, Qianfeng CHEN, Sanying HOU()
Received:
2021-08-02
Revised:
2021-08-18
Online:
2021-11-05
Published:
2021-11-03
Contact:
Boya ZHANG,Sanying HOU
E-mail:zby_librep@163.com;tysgying@163.com
CLC Number:
Boya ZHANG, Bohong LIU, Yuanhang LI, Xin LIU, Qianfeng CHEN, Sanying HOU. Binary oxide modified catalyst preparation and self-humidifying performance[J]. Energy Storage Science and Technology, 2021, 10(6): 2013-2019.
1 | CANO Z P, BANHAM D, YE S Y, et al. Batteries and fuel cells for emerging electric vehicle markets[J]. Nature Energy, 2018, 3(4): 279-289. |
2 | GERBEC M, JOVAN V, PETROVČIČ J. Operational and safety analyses of a commercial PEMFC system[J]. International Journal of Hydrogen Energy, 2008, 33(15): 4147-4160. |
3 | TEIXEIRA F C, DE SÁ A I, TEIXEIRA A P S, et al. Nafion phosphonic acid composite membranes for proton exchange membranes fuel cells[J]. Applied Surface Science, 2019, 487: 889-897. |
4 | KETPANG K, LEE K, SHANMUGAM S. Facile synthesis of porous metal oxide nanotubes and modified nafion composite membranes for polymer electrolyte fuel cells operated under low relative humidity[J]. ACS Applied Materials & Interfaces, 2014, 6(19): 16734-16744. |
5 | SAKAMOTO M, NOHARA S, MIYATAKE K, et al. Effects of incorporation of SiO2 nanoparticles into sulfonated polyimide electrolyte membranes on fuel cell performance under low humidity conditions[J]. Electrochimica Acta, 2014, 137: 213-218. |
6 | BAE I, OH K H, YUN S H, et al. Asymmetric silica composite polymer electrolyte membrane for water management of fuel cells[J]. Journal of Membrane Science, 2017, 542: 52-59. |
7 | KETPANG K, SHANMUGAM S, SUWANBOON C, et al. Efficient water management of composite membranes operated in polymer electrolyte membrane fuel cells under low relative humidity[J]. Journal of Membrane Science, 2015, 493: 285-298. |
8 | SHANMUGAM S, KETPANG K, AZIZ M A, et al. Composite polymer electrolyte membrane decorated with porous titanium oxide nanotubes for fuel cell operating under low relative humidity[J]. Electrochimica Acta, 2021, 384: doi: 10.1016/j.electacta.2021.138407 |
9 | PATEL H A, MANSOR N, GADIPELLI S, et al. Superacidity in nafion/MOF hybrid membranes retains water at low humidity to enhance proton conduction for fuel cells[J]. ACS Applied Materials & Interfaces, 2016, 8(45): 30687-30691. |
10 | OH K, KWON O, SON B, et al. Nafion-sulfonated silica composite membrane for proton exchange membrane fuel cells under operating low humidity condition[J]. Journal of Membrane Science, 2019, 583: 103-109. |
11 | WATANABE M, UCHIDA H, EMORI M. Polymer electrolyte membranes incorporated with nanometer-size particles of Pt and/or metal-oxides: experimental analysis of the self-humidification and suppression of gas-crossover in fuel cells[J]. The Journal of Physical Chemistry B, 1998, 102(17): 3129-3137. |
12 | LIN C L, HSU S C, HO W Y. Addition of sulfonated silicon dioxide on an anode catalyst layer to improve the performance of a self-humidifying proton exchange membrane fuel cell[J]. Functional Materials Letters, 2016, 9(2): doi: 10.1142/S1793604716500259 |
13 | JIENKULSAWAD P, CHEN Y S, ARPORNWICHANOP A. Modifying the catalyst layer using polyvinyl alcohol for the performance improvement of proton exchange membrane fuel cells under low humidity operations[J]. Polymers, 2020, 12(9): 1865. |
14 | LO A Y, HUANG C Y, SUNG L Y, et al. Electrophoretic deposited Pt/C/SiO2 anode for self-humidifying and improved catalytic activity in PEMFC[J]. Electrochimica Acta, 2015, 180: 610-615. |
15 | GANESAN A, NARAYANASAMY M, SHUNMUGAVEL K. Self-humidifying manganese oxide-supported Pt electrocatalysts for highly-durable PEM fuel cells[J]. Electrochimica Acta, 2018, 285: 47-59. |
16 | SU H N, XU L M, ZHU H P, et al. Self-humidification of a PEM fuel cell using a novel Pt/SiO2/C anode catalyst[J]. International Journal of Hydrogen Energy, 2010, 35(15): 7874-7880. |
17 | LO A Y, HUANG C Y, SUNG L Y, et al. Low humidifying proton exchange membrane fuel cells with enhanced power and Pt-C-h-SiO2 anodes prepared by electrophoretic deposition[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1303-1310. |
18 | JUNG C Y, YI J Y, YI S C. On the role of the silica-containing catalyst layer for proton exchange membrane fuel cells[J]. Energy, 2014, 68: 794-800. |
19 | HOU S Y, CHEN R, ZOU H B, et al. High-performance membrane electrode assembly with multi-functional Pt/SnO2-SiO2/C catalyst for proton exchange membrane fuel cell operated under low-humidity conditions[J]. International Journal of Hydrogen Energy, 2016, 41(21): 9197-9203. |
20 | LUO F, LIAO S J, DANG D, et al. Tin and silicon binary oxide on the carbon support of a Pt electrocatalyst with enhanced activity and durability[J]. ACS Catalysis, 2015, 5(4): 2242-2249. |
21 | LEIMIN X, SHIJUN L, LIJUN Y, et al. Investigation of a novel catalyst coated membrane method to prepare low-platinum-loading membrane electrode assemblies for PEMFCs[J]. Fuel Cells, 2009, 9(2): 101-105. |
[1] | XIE Chenglu, HUANG Xiankun, KANG Lixia, LIU Yongzhong. Electrocatalytic performances of Ru nanoparticles supported on carbon nanotubes by colloidal solution for synthetic ammonia [J]. Energy Storage Science and Technology, 2022, 11(6): 1947-1956. |
[2] | WANG Peican, WAN Lei, XU Ziang, XU Qin, PANG Maobin, CHEN Jinxun, WANG Baoguo. Interface engineering of self-supported electrode for electrochemical water splitting [J]. Energy Storage Science and Technology, 2022, 11(6): 1934-1946. |
[3] | Jianxin CHEN, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Study on nickel-based nanoparticles supported by biomass carbon for electrocatalytic hydrogen evolution [J]. Energy Storage Science and Technology, 2022, 11(5): 1350-1357. |
[4] | Yezhou HU, Shuang WANG, Tao SHEN, Ye ZHU, Deli WANG. Recent progress in confined noble-metal electrocatalysts for oxygen reduction reaction [J]. Energy Storage Science and Technology, 2022, 11(4): 1264-1277. |
[5] | Yunqi GUO, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Preparation of Al2O3 fibers using a template method, and the investigation of the thermal properties of paraffin phase-change composite [J]. Energy Storage Science and Technology, 2022, 11(2): 511-520. |
[6] | Linhui JIA, Zejia GAI, Moxi LI, Huagen LIANG. Research progress of MOFs and their derivatives as cathode catalysts for Li-O2 batteries [J]. Energy Storage Science and Technology, 2022, 11(2): 503-510. |
[7] | Linhan XIE, Wanzhong LI, Qianqian ZHANG, Gaoping CAO, Jingyi QIU, Hai MING, Wei FENG. Research advances in plant-power generation technology [J]. Energy Storage Science and Technology, 2022, 11(2): 442-466. |
[8] | Yuexia LI, Quanbing LIU. Application of MXene-based nanomaterials in electrocatalysis for oxygen reduction reaction [J]. Energy Storage Science and Technology, 2021, 10(6): 1918-1930. |
[9] | Feng HE, Jingjing ZHANG, Yijun CHEN, Jian ZHANG, Deli WANG. Recent progress on carbon-based catalysts for electrochemical synthesis of H2O2 via oxygen reduction reaction [J]. Energy Storage Science and Technology, 2021, 10(6): 1963-1976. |
[10] | Shenzhi ZHANG, Likai WANG, Yinggang SUN, Heng LÜ, Ziyin YANG, Leilei LI, Zhongfang LI. Construction of two dimensional carbon-supported Au4Pd2 catalysts and their electrocatalytic performances [J]. Energy Storage Science and Technology, 2021, 10(6): 2028-2038. |
[11] | Wenwu ZOU, Guoxing JIANG, Li DU. Recent advances in covalent organic frameworks (COFs) for electrocatalysis of oxygen electrodes [J]. Energy Storage Science and Technology, 2021, 10(6): 1891-1905. |
[12] | Shishi ZHANG, Yanyang QIN, Yaqiong SU. Activity origin of single/double-atom catalyst for hydrogen evolution reaction [J]. Energy Storage Science and Technology, 2021, 10(6): 2008-2012. |
[13] | Wenbing SONG, Yuanwei LU, Xiaotong CHEN, Cong HE, Zhansheng FAN, Yuting WU. The preparation and thermophysical properties of chloride/ceramic-shaped stabilized composite phase-change materials [J]. Energy Storage Science and Technology, 2021, 10(5): 1720-1728. |
[14] | Zhong XU, Jing HOU, Jun LI, Enhui WU, Ping HUANG, Yalan TANG. Properties of different particle-sized activated carbon/myristic acid composite phase change material [J]. Energy Storage Science and Technology, 2021, 10(1): 177-189. |
[15] | Chenlu YU, Xiaohua TIAN, han ZHENG, Zhejuan ZHANG, Zhuo SUN, Xianqing PIAO. Research progress in high stability of silicon/hard carbon anodes for LIBs [J]. Energy Storage Science and Technology, 2021, 10(1): 128-136. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||