Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (6): 1977-1986.doi: 10.19799/j.cnki.2095-4239.2021.0359
• Special issue of hydrogen energy and fuel cell • Previous Articles Next Articles
Yuxi WU(), Tingting HAN, Ziheng XIE, Lin LI, Yanwen SONG, Jiacang LIANG, Jinjin ZHANG, Fangyong YU(), Naitao YANG
Received:
2021-07-19
Revised:
2021-08-02
Online:
2021-11-05
Published:
2021-11-03
CLC Number:
Yuxi WU, Tingting HAN, Ziheng XIE, Lin LI, Yanwen SONG, Jiacang LIANG, Jinjin ZHANG, Fangyong YU, Naitao YANG. Recent progress in direct carbon solid oxide fuel cells: Carbon fuels and reverse Boudouard reaction catalysts[J]. Energy Storage Science and Technology, 2021, 10(6): 1977-1986.
1 | JIANG C, MA J, CORRE G, et al. Challenges in developing direct carbon fuel cells[J]. Chemical Society Reviews, 2017, 46(10): 2889-2912. |
2 | GÜR T M. Critical review of carbon conversion in "carbon fuel cells"[J]. Chemical Reviews, 2013, 113(8): 6179-6206. |
3 | CAO D X, SUN Y, WANG G L. Direct carbon fuel cell: Fundamentals and recent developments[J]. Journal of Power Sources, 2007, 167(2): 250-257. |
4 | AHN S Y, EOM S Y, RHIE Y H, et al. Utilization of wood biomass char in a direct carbon fuel cell (DCFC) system[J]. Applied Energy, 2013, 105: 207-216. |
5 | LI C G, YI H, LEE D. On-demand supply of slurry fuels to a porous anode of a direct carbon fuel cell: Attempts to increase fuel-anode contact and realize long-term operation[J]. Journal of Power Sources, 2016, 309: 99-107. |
6 | KACPRZAK A, KOBYLECKI R, BIS Z. Influence of temperature and composition of NaOH-KOH and NaOH-LiOH electrolytes on the performance of a direct carbon fuel cell[J]. Journal of Power Sources, 2013, 239: 409-414. |
7 | ZECEVIC S, PATTON E M, PARHAMI P. Direct electrochemical power generation from carbon in fuel cells with molten hydroxide electrolyte[J]. Chemical Engineering Communications, 2005, 192(12): 1655-1670. |
8 | JAYAKUMAR A, KÜNGAS R, ROY S, et al. A direct carbon fuel cell with a molten antimony anode[J]. Energy & Environmental Science, 2011, 4(10): 4133-4137. |
9 | RADY A C, GIDDEY S, KULKARNI A, et al. Direct carbon fuel cell operation on brown coal[J]. Applied Energy, 2014, 120: 56-64. |
10 | YU X K, SHI Y X, WANG H J, et al. Using potassium catalytic gasification to improve the performance of solid oxide direct carbon fuel cells: Experimental characterization and elementary reaction modeling[J]. Journal of Power Sources, 2014, 252: 130-137. |
11 | LIU J, ZHOU M Y, ZHANG Y P, et al. Electrochemical oxidation of carbon at high temperature: Principles and applications[J]. Energy & Fuels, 2018, 32(4): 4107-4117. |
12 | NAKAGAWA N, ISHIDA M. Performance of an internal direct-oxidation carbon fuel cell and its evaluation by graphic exergy analysis[J]. Industrial & Engineering Chemistry Research, 1988, 27(7): 1181-1185. |
13 | XIE Y M, XIAO J, LIU Q S, et al. Highly efficient utilization of walnut shell biochar through a facile designed portable direct carbon solid oxide fuel cell stack[J]. Energy, 2021, 227: 120456. |
14 | BAI Y H, LIU Y, TANG Y B, et al. Direct carbon solid oxide fuel Cell—a potential high performance battery[J]. International Journal of Hydrogen Energy, 2011, 36(15): 9189-9194. |
15 | XIE Y M, TANG Y B, LIU J. A verification of the reaction mechanism of direct carbon solid oxide fuel cells[J]. Journal of Solid State Electrochemistry, 2013, 17(1): 121-127. |
16 | XIE Y M, CAI W Z, XIAO J, et al. Electrochemical gas-electricity cogeneration through direct carbon solid oxide fuel cells[J]. Journal of Power Sources, 2015, 277: 1-8. |
17 | XU H R, CHEN B, ZHANG H C, et al. Experimental and modeling study of high performance direct carbon solid oxide fuel cell with in situ catalytic steam-carbon gasification reaction[J]. Journal of Power Sources, 2018, 382: 135-143. |
18 | 刘江, 刘燕, 唐玉宝, 等. 一种直接碳固体氧化物燃料电池电源系统: CN102130354A[P]. 2011-07-20. |
LIU J, LIU Y, TANG Y B, et al. Direct carbon solid oxide fuel cell power system: CN102130354A[P]. 2011-07-20. | |
19 | WANG X Q, LIU J, XIE Y M, et al. A high performance direct carbon solid oxide fuel cell stack for portable applications[J]. 物理化学学报, 2017, 33(8): 1614-1620. |
WANG X Q, LIU J, XIE Y M, et al. A high performance direct carbon solid oxide fuel cell stack for portable applications[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1614-1620. | |
20 | CAI W Z, LIU J, LIU P P, et al. A direct carbon solid oxide fuel cell fueled with char from wheat straw[J]. International Journal of Energy Research, 2019, 43(7): 2468-2477. |
21 | ZHU X B, LI Y Q, LÜ Z. Continuous conversion of biomass wastes in a La0.75Sr0.25Cr0.5Mn0.5O3-δ based carbon-air battery[J]. International Journal of Hydrogen Energy, 2016, 41(9): 5057-5062. |
22 | CAI W Z, ZHOU Q, XIE Y M, et al. A direct carbon solid oxide fuel cell operated on a plant derived biofuel with natural catalyst[J]. Applied Energy, 2016, 179: 1232-1241. |
23 | CAI W Z, LIU J, YU F Y, et al. A high performance direct carbon solid oxide fuel cell fueled by Ca-loaded activated carbon[J]. International Journal of Hydrogen Energy, 2017, 42(33): 21167-21176. |
24 | TANG H Q, YU F Y, WANG Y S, et al. Enhancing the power output of direct carbon solid oxide fuel cell using Ba-loaded activated carbon fuel[J]. Energy Technology, 2019, 7(4): 1800885. |
25 | YU F Y, HAN T T, WANG Y S, et al. Performance improvement of a direct carbon solid oxide fuel cell via strontium-catalyzed carbon gasification[J]. International Journal of Hydrogen Energy, 2020, 45(43): 23368-23377. |
26 | JIAO Y, TIAN W J, CHEN H L, et al. In situ catalyzed Boudouard reaction of coal char for solid oxide-based carbon fuel cells with improved performance[J]. Applied Energy, 2015, 141: 200-208. |
27 | ZHANG L, XIAO J, XIE Y M, et al. Behavior of strontium- and magnesium-doped gallate electrolyte in direct carbon solid oxide fuel cells[J]. Journal of Alloys and Compounds, 2014, 608: 272-277. |
28 | XIE Y, TANG Y, LIU J. An Al2O3-doped YSZ electrolyte-supporting solid oxide fuel cell fabricated by dip-coating and its direct operation on carbon fuel[J]. ECS Transactions, 2013, 57(1): 3039-3048. |
29 | YU F Y, XIAO J, LEI L B, et al. Effects of doping alumina on the electrical and sintering performances of yttrium-stabilized-zirconia[J]. Solid State Ionics, 2016, 289: 28-34. |
30 | CHEN Q Y, QIU Q Y, YAN X M, et al. A compact and seal-less direct carbon solid oxide fuel cell stack stepping into practical application[J]. Applied Energy, 2020, 278: 115657. |
31 | YAN X M, ZHOU M Y, ZHANG Y P, et al. An all-solid-state carbon-air battery reaching an output power over 10 W and a specific energy of 3600 W·h/kg[J]. Chemical Engineering Journal, 2021, 404: 127057. |
32 | CAI W Z, LIU J, XIE Y M, et al. An investigation on the kinetics of direct carbon solid oxide fuel cells[J]. Journal of Solid State Electrochemistry, 2016, 20(8): 2207-2216. |
33 | 刘江, 颜晓敏. 直接碳固体氧化物燃料电池[J]. 电化学, 2020, 26(2): 175-189. |
LIU J, YAN X M. Direct carbon solid oxide fuel cells[J]. Journal of Electrochemistry, 2020, 26(2): 175-189. | |
34 | TANG Y B, LIU J. Effect of anode and Boudouard reaction catalysts on the performance of direct carbon solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2010, 35(20): 11188-11193. |
35 | CAI W Z, ZHOU Q, XIE Y M, et al. A facile method of preparing Fe-loaded activated carbon fuel for direct carbon solid oxide fuel cells[J]. Fuel, 2015, 159: 887-893. |
36 | WU H, XIAO J, ZENG X Y, et al. A high performance direct carbon solid oxide fuel cell-A green pathway for brown coal utilization[J]. Applied Energy, 2019, 248: 679-687. |
37 | 谢永敏, 王晓强, 刘江, 等. 管式电解质支撑型直接碳固体氧化物燃料电池的浸渍法制备及电性能[J]. 物理化学学报, 2017, 33(2): 386-392. |
XIE Y M, WANG X Q, LIU J, et al. Fabrication and performance of tubular electrolyte-supporting direct carbon solid oxide fuel cell by dip coating technique[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 386-392. | |
38 | WANG W, LIU Z J, ZHANG Y P, et al. A direct carbon solid oxide fuel cell stack on a single electrolyte plate fabricated by tape casting technique[J]. Journal of Alloys and Compounds, 2019, 794: 294-302. |
39 | ZHOU M Y, WANG X Q, ZHANG Y P, et al. Effect of counter diffusion of CO and CO2 between carbon and anode on the performance of direct carbon solid oxide fuel cells[J]. Solid State Ionics, 2019, 343: 115127. |
40 | YU F Y, ZHANG Y P, YU L, et al. All-solid-state direct carbon fuel cells with thin yttrium-stabilized-zirconia electrolyte supported on nickel and iron bimetal-based anodes[J]. International Journal of Hydrogen Energy, 2016, 41(21): 9048-9058. |
41 | XIAO J, HAN D, YU F Y, et al. Characterization of symmetrical SrFe0.75Mo0.25O3-δ electrodes in direct carbon solid oxide fuel cells[J]. Journal of Alloys and Compounds, 2016, 688: 939-945. |
42 | ZHOU Q, CAI W Z, ZHANG Y P, et al. Electricity generation from corn cob char though a direct carbon solid oxide fuel cell[J]. Biomass and Bioenergy, 2016, 91: 250-258. |
43 | AN W T, SUN X J, JIAO Y, et al. A solid oxide carbon fuel cell operating on pomelo peel char with high power output[J]. International Journal of Energy Research, 2019, 43(7): 2514-2526. |
44 | WU Y Z, SU C, ZHANG C M, et al. A new carbon fuel cell with high power output by integrating with in situ catalytic reverse Boudouard reaction[J]. Electrochemistry Communications, 2009, 11(6): 1265-1268. |
45 | CAI W Z, CAO D, ZHOU M Y, et al. Sulfur-tolerant Fe-doped La0.3Sr0.7TiO3 perovskite as anode of direct carbon solid oxide fuel cells[J]. Energy, 2020, 211: 118958. |
46 | LI C, SHI Y X, CAI N S. Performance improvement of direct carbon fuel cell by introducing catalytic gasification process[J]. Journal of Power Sources, 2010, 195(15): 4660-4666. |
47 | KULKARNI A, GIDDEY S, BADWAL S P S, et al. Electrochemical performance of direct carbon fuel cells with titanate anodes[J]. Electrochimica Acta, 2014, 121: 34-43. |
48 | SUN K N, LIU J, FENG J, et al. Investigation of B-site doped perovskites Sr2Fe1.4X0.1Mo0.5O6-δ (X=Bi, Al, Mg) as high-performance anodes for hybrid direct carbon fuel cell[J]. Journal of Power Sources, 2017, 365: 109-116. |
49 | XIE Y M, LU Z B, MA C C, et al. High-performance gas-electricity cogeneration using a direct carbon solid oxide fuel cell fueled by biochar derived from camellia oleifera shells[J]. International Journal of Hydrogen Energy, 2020, 45(53): 29322-29330. |
50 | ZHU Z Y, ZENG X Y, WU H, et al. Green energy application technology of litchi pericarp-derived carbon material with high performance[J]. Journal of Cleaner Production, 2021, 286: 124960. |
51 | YU F Y, WANG Y S, XIE Y J, et al. A microtubular direct carbon solid oxide fuel cell operated on the biochar derived from pepper straw[J]. Energy Technology, 2020, 8(3): 1901077. |
52 | KULKARNI A, GIDDEY S, BADWAL S P S. Yttria-doped ceria anode for carbon-fueled solid oxide fuel cell[J]. Journal of Solid State Electrochemistry, 2015, 19(2): 325-335. |
53 | MUNNINGS C, KULKARNI A, GIDDEY S, et al. Biomass to power conversion in a direct carbon fuel cell[J]. International Journal of Hydrogen Energy, 2014, 39(23): 12377-12385. |
54 | QIU Q Y, ZHOU M Y, CAI W Z, et al. A comparative investigation on direct carbon solid oxide fuel cells operated with fuels of biochar derived from wheat straw, corncob, and bagasse[J]. Biomass and Bioenergy, 2019, 121: 56-63. |
55 | DUDEK M, ADAMCZYK B, SITARZ M, et al. The usefulness of walnut shells as waste biomass fuels in direct carbon solid oxide fuel cells[J]. Biomass and Bioenergy, 2018, 119: 144-154. |
56 | WU H, XIAO J, HAO S R, et al. In-situ catalytic gasification of kelp-derived biochar as a fuel for direct carbon solid oxide fuel cells[J]. Journal of Alloys and Compounds, 2021, 865: 158922. |
57 | KAKLIDIS N, KYRIAKOU V, GARAGOUNIS I, et al. Effect of carbon type on the performance of a direct or hybrid carbon solid oxide fuel cell[J]. RSC Advances, 2014, 4(36): 18792-18800. |
58 | LI J W, WEI B, WANG C Q, et al. High-performance and stable La0.8Sr0.2Fe0.9Nb0.1O3-δanode for direct carbon solid oxide fuel cells fueled by activated carbon and corn straw derived carbon[J]. International Journal of Hydrogen Energy, 2018, 43(27): 12358-12367. |
[1] | Changyang LIU, Liuzhen BIAN, Jianquan GAO, Jihua PENG, Jun PENG, Shengli AN. Electrochemical performance of La0.7Sr0.3Fe0.9Ni0.1O3-δ symmetric electrode for solid oxide fuel cell with CO as fuel [J]. Energy Storage Science and Technology, 2022, 11(7): 2059-2065. |
[2] | Hui TIAN, Dong HUA, Maoli MAN, Chunzhe LIU, Guojun LI, Xiongwen ZHANG. Experimental study on carbon deposition characteristics of planar solid oxide fuel cell [J]. Energy Storage Science and Technology, 2022, 11(5): 1314-1321. |
[3] | Pingping LI, Shanshan CHEN, Lulu ZHAO, Mingliang SHI, Yan HUANG, Chufu LI. Test design of integrated gasification solid oxide fuel cell (IG-SOFC) grid-connection technology [J]. Energy Storage Science and Technology, 2021, 10(6): 2039-2045. |
[4] | Tingting HAN, Yuxi WU, Ziheng XIE, Xiuxia MENG, Jinjin ZHANG, Yujiao XIE, Fangyong YU, Naitao YANG. Recent advances in carbon deposition mechanism and performance improvement of Ni-based anode for solid oxide fuel cells [J]. Energy Storage Science and Technology, 2021, 10(6): 1931-1942. |
[5] | Shouli WEI, Xichao LI, Xiuliang CHANG, Bing CHEN, Zhuo XU, Tao ZHANG, Lili ZHENG, Zuoqiang DAI. Review of development of bipolar plate materials for solid oxide fuel cell [J]. Energy Storage Science and Technology, 2021, 10(6): 1943-1951. |
[6] | Wenchao LIAN, Libin LEI, Bo LIANG, Chao WANG, Lei WEI, Zhipeng TIAN, Jianping LIU, Huazheng YANG, Jiajian LIANG, Tao SHI. Utilization and synthesis of ammonia in proton-conducting solid oxide electrochemical devices [J]. Energy Storage Science and Technology, 2021, 10(6): 1998-2007. |
[7] | Lina ZHENG, Wenzhong WANG, Kaijie JIA, Shaofeng QIU, Haoyuan ZHU, Fangyong YU, Xiuxia MENG, Jinjin ZHANG, Naitao YANG. Three-dimensional printing technologies in the field of solid oxide fuel cells [J]. Energy Storage Science and Technology, 2021, 10(6): 1952-1962. |
[8] | DONG Xu, DU Zhihong, ZHANG Yang, LI Keyun, ZHAO Hailei. SrFeF x O3- x - δ cathode with high catalytic activity for solid oxide fuel cells [J]. Energy Storage Science and Technology, 2020, 9(2): 415-424. |
[9] | LV Zewei, HAN Minfang. Design of solar cogeneration system of hydrogen and power with solid oxide cells#br# [J]. Energy Storage Science and Technology, 2017, 6(2): 275-279. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||