1 |
BULLICH-MASSAGUÉ E, CIFUENTES-GARCÍA F J, GLENNY-CRENDE I, et al. A review of energy storage technologies for large scale photovoltaic power plants[J]. Applied Energy, 2020, 274: 115213.
|
2 |
IBRAHIM H, BELMOKHTAR K, GHANDOUR M. Investigation of usage of compressed air energy storage for power generation system improving - application in a microgrid integrating wind energy[J]. Energy Procedia, 2015, 73: 305-316.
|
3 |
MENG H, WANG M H, ANEKE M, et al. Technical performance analysis and economic evaluation of a compressed air energy storage system integrated with an organic Rankine cycle[J]. Fuel, 2018, 211: 318-330.
|
4 |
JIANG R H, YIN H B, CHEN B M, et al. Multi-objective assessment, optimization and application of a grid-connected combined cooling, heating and power system with compressed air energy storage and hybrid refrigeration[J]. Energy Conversion and Management, 2018, 174: 453-464.
|
5 |
RAZMI A, SOLTANI M, TORABI M. Investigation of an efficient and environmentally-friendly CCHP system based on CAES, ORC and compression-absorption refrigeration cycle: Energy and exergy analysis[J]. Energy Conversion and Management, 2019, 195: 1199-1211.
|
6 |
JI W, ZHOU Y, SUN Y, et al. Thermodynamic analysis of a novel hybrid wind-solar-compressed air energy storage system[J]. Energy Conversion and Management, 2017, 142: 176-187.
|
7 |
吴毅, 胡东帅, 王明坤, 等. 一种新型的跨临界CO2储能系统[J]. 西安交通大学学报, 2016(3): 45-49,100.
|
|
WU Y, HU D S, WANG M K, et al. A novel transcritical CO2 energy storage system[J]. Journal of Xi'an Jiaotong University, 2016(3): 45-49,100.
|
8 |
WANG M K, ZHAO P, WU Y, et al. Performance analysis of a novel energy storage system based on liquid carbon dioxide[J]. Applied Thermal Engineering, 2015, 91: 812-823.
|
9 |
郝银萍, 何青, 刘文毅. 多级回热式跨临界压缩二氧化碳储能系统热力性能分析[J]. 热能动力工程, 2020, 35(4): 16-23.
|
|
HAO Y P, HE Q, LIU W Y. Thermal performance analysis of multi-stage regenerative transcritical compressed carbon dioxide energy storage system[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(4): 16-23.
|
10 |
XU M J, ZHAO P, HUO Y W, et al. Thermodynamic analysis of a novel liquid carbon dioxide energy storage system and comparison to a liquid air energy storage system[J]. Journal of Cleaner Production, 2020, 242: 118437.
|
11 |
LIU Z, LIU Z H, YANG X Q, et al. Advanced exergy and exergoeconomic analysis of a novel liquid carbon dioxide energy storage system[J]. Energy Conversion and Management, 2020, 205: 112391.
|
12 |
王增义, 刘中良, 马重芳. 热管式相变蓄热换热器储/放能过程中传热特性的实验研究[J]. 工程热物理学报, 2005, 26(6): 989-991.
|
|
WANG Z Y, LIU Z L, MA C F. Experimental study on heat transfer characteristics of the process of charging/discharging of a heat pipe heat exchanger with latent heat storage[J]. Journal of Engineering Thermophysics, 2005, 26(6): 989-991.
|
13 |
刘圣春, 霍宇杰, 代宝民. 新型环保工质R245fa研究现状及展望[J]. 制冷技术, 2017, 37(4): 47-55.
|
|
LIU S C, HUO Y J, DAI B M. Research status and prospect of new environmental-friendly refrigerant of R245fa[J]. Chinese Journal of Refrigeration Technology, 2017, 37(4): 47-55.
|
14 |
岑幻霞. 关于太阳能保证率f的计算[J]. 太阳能学报, 1981, 2(1): 59-68.
|
|
CEN Huanxia. Calculation of the fraction "f" of the heating load supplied by solar energy[J]. Acta Energiae Solaris Sinica, 1981, 2(1): 59-68.
|
15 |
杨绪青, 余真珠, 杨肖虎, 等. 压缩空气储能与吸收式热泵循环集成的热电联产系统[J]. 储能科学与技术, 2021, 10(1): 362-369.
|
|
YANG X Q, YU Z Z, YANG X H, et al. Combined heating and power system coupled with compressed air energy storage and absorption heat pump cycle[J]. Energy Storage Science and Technology, 2021, 10(1): 362-369.
|
16 |
李玉平, 徐玉杰, 李斌, 等. 跨临界二氧化碳储能系统研究[J]. 中国电机工程学报, 2018, 38(21): 6367-6374, 6499.
|
|
LI Y P, XU Y J, LI B, et al. Research on transcritical carbon dioxide energy storage system[J]. Proceedings of the CSEE, 2018, 38(21): 6367-6374, 6499.
|
17 |
CHEN L X, XIE M N, ZHAO P P, et al. A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid[J]. Applied Energy, 2018, 210: 198-210.
|