Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (7): 2066-2074.doi: 10.19799/j.cnki.2095-4239.2021.0674
• Energy Storage Materials and Devices • Previous Articles Next Articles
Xiaosa ZHANG(), Hongyuan WANG, Zhenbiao LI, Zhimei XIA()
Received:
2021-12-01
Revised:
2022-01-04
Online:
2022-07-05
Published:
2022-06-29
Contact:
Zhimei XIA
E-mail:1694190694@qq.com;zhimei_x@163.com
CLC Number:
Xiaosa ZHANG, Hongyuan WANG, Zhenbiao LI, Zhimei XIA. New process of sulfated roasting-water leaching for treating electrode material of spent lithium iron phosphate batteries[J]. Energy Storage Science and Technology, 2022, 11(7): 2066-2074.
Table 3
Orthogonal experiment results of sulfated roasting and water leaching"
实验号 | A | B | C | D | E | F | Fe浸出率/% |
---|---|---|---|---|---|---|---|
1 | 1.0 | 0.5 | 80 | 4.0/1 | 40 | 0.5 | 96.73 |
2 | 1.0 | 1.0 | 90 | 4.5/1 | 50 | 1.0 | 99.82 |
3 | 1.0 | 1.5 | 100 | 5.0/1 | 60 | 1.5 | 99.89 |
4 | 1.0 | 2.0 | 110 | 5.5/1 | 70 | 2.0 | 98.52 |
5 | 1.0 | 2.5 | 120 | 6.0/1 | 80 | 2.5 | 98.14 |
6 | 1.1 | 0.5 | 90 | 5.0/1 | 70 | 2.5 | 96.93 |
7 | 1.1 | 1.0 | 100 | 5.5/1 | 80 | 0.5 | 99.12 |
8 | 1.1 | 1.5 | 110 | 6.0/1 | 40 | 1.0 | 98.87 |
9 | 1.1 | 2.0 | 120 | 4.0/1 | 50 | 1.5 | 99.25 |
10 | 1.1 | 2.5 | 80 | 4.5/1 | 60 | 2.0 | 99.35 |
11 | 1.2 | 0.5 | 100 | 6.0/1 | 50 | 2.0 | 98.29 |
12 | 1.2 | 1.0 | 110 | 4.0/1 | 60 | 2.5 | 99.38 |
13 | 1.2 | 1.5 | 120 | 4.5/1 | 70 | 0.5 | 99.25 |
14 | 1.2 | 2.0 | 80 | 5.0/1 | 80 | 1.0 | 99.62 |
15 | 1.2 | 2.5 | 90 | 5.5/1 | 40 | 1.5 | 96.99 |
16 | 1.3 | 0.5 | 110 | 4.5/1 | 80 | 1.5 | 99.72 |
17 | 1.3 | 1.0 | 120 | 5.0/1 | 40 | 2.0 | 99.34 |
18 | 1.3 | 1.5 | 80 | 5.5/1 | 50 | 2.5 | 96.56 |
19 | 1.3 | 2.0 | 90 | 6.0/1 | 60 | 0.5 | 98.21 |
20 | 1.3 | 2.5 | 100 | 4.0/1 | 70 | 1.0 | 97.92 |
21 | 1.4 | 0.5 | 120 | 5.5/1 | 60 | 1.0 | 95.87 |
22 | 1.4 | 1.0 | 80 | 6.0/1 | 70 | 1.5 | 99.75 |
23 | 1.4 | 1.5 | 90 | 4.0/1 | 80 | 2.0 | 99.82 |
24 | 1.4 | 2.0 | 100 | 4.5/1 | 40 | 2.5 | 99.62 |
25 | 1.4 | 2.5 | 110 | 5.0/1 | 50 | 0.5 | 99.21 |
K1 | 98.62 | 97.508 | 98.402 | 98.62 | 98.31 | 98.504 | — |
K2 | 98.704 | 99.482 | 98.354 | 99.552 | 98.626 | 98.42 | — |
K3 | 98.706 | 98.878 | 98.968 | 98.998 | 98.54 | 99.12 | — |
K4 | 98.35 | 99.044 | 99.14 | 97.412 | 98.474 | 99.064 | — |
K5 | 98.854 | 98.322 | 98.37 | 98.652 | 99.284 | 98.126 | — |
R | 0.504 | 1.974 | 0.786 | 2.14 | 0.974 | 0.994 | — |
1 | 肖武坤, 张辉. 中国废旧车用锂离子电池回收利用概况[J]. 电源技术, 2020, 44(8): 1217-1222. |
XIAO W K, ZHANG H. Recycling status of spent lithium-ion batteries for electric vehicle in China[J]. Chinese Journal of Power Sources, 2020, 44(8): 1217-1222. | |
2 | 周吉奎, 刘牡丹, 刘勇, 等. 硫酸-双氧水浸出废弃磷酸铁锂中锂的实验研究[J]. 矿冶工程, 2020, 40(6): 79-81. |
ZHOU J K, LIU M D, LIU Y, et al. Experimental study on leaching of lithium from waste lithium iron phosphate with sulfuric acid and hydrogen peroxide[J]. Mining and Metallurgical Engineering, 2020, 40(6): 79-81. | |
3 | 贡纬华, 王华丹, 苏毅, 等. 锂离子电池磷酸铁锂正极材料研究进展[J]. 化工新型材料, 2020, 48(7): 30-33, 37. |
GONG W H, WANG H D, SU Y, et al. Research progress in LiFePO4 electrode material for lithium-ion battery[J]. New Chemical Materials, 2020, 48(7): 30-33, 37. | |
4 | HANNAN M A, HOQUE M M, MOHAMED A, et al. Review of energy storage systems for electric vehicle applications: Issues and challenges[J]. Renewable and Sustainable Energy Reviews, 2017, 69: 771-789. |
5 | 刘佩文, 董鹏, 孟奇, 等. 废旧磷酸铁锂电池正极材料固相法再生研究进展[J]. 无机盐工业, 2020, 52(9): 6-8, 14. |
LIU P W, DONG P, MENG Q, et al. Research development of solid phase regeneration of cathode material of spent lithium iron phosphate batteries[J]. Inorganic Chemicals Industry, 2020, 52(9): 6-8, 14. | |
6 | 万青珂, 张洋, 郑诗礼, 等. 废旧磷酸铁锂正极粉磷酸浸出过程的优化及宏观动力学[J]. 化工进展, 2020, 39(6): 2495-2502. |
WAN Q K, ZHANG Y, ZHENG S L, et al. Process optimization and kinetics for leaching spent lithium iron phosphate cathode powder by phosphate acid[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2495-2502. | |
7 | 鲍维东, 骆艳华, 裴晓东. 废旧磷酸铁锂锂离子电池正极的回收[J]. 电池, 2020, 50(2): 200-203. |
BAO W D, LUO Y H, PEI X D. Recycle of cathode in spent lithium iron phosphate Li-ion battery[J]. Battery Bimonthly, 2020, 50(2): 200-203. | |
8 | 靳星, 贾美丽, 杜浩, 等. 废旧磷酸铁锂正极材料回收再生研究进展[J]. 有色金属工程, 2020, 10(11): 64-72. |
JIN X, JIA M L, DU H, et al. Research progress on recovery of spent lithium iron phosphate cathode materials[J]. Nonferrous Metals Engineering, 2020, 10(11): 64-72. | |
9 | XIN Y Y, GUO X M, CHEN S, et al. Bioleaching of valuable metals Li, Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery[J]. Journal of Cleaner Production, 2016, 116: 249-258. |
10 | 陈永珍, 黎华玲, 宋文吉, 等. 废旧磷酸铁锂电池回收技术研究进展[J]. 储能科学与技术, 2019, 8(2): 237-247. |
CHEN Y Z, LI H L, SONG W J, et al. A review on recycling technology of spent lithium iron phosphate battery[J]. Energy Storage Science and Technology, 2019, 8(2): 237-247. | |
11 | CHEN J P, LI Q W, SONG J S, et al. Environmentally friendly recycling and effective repairing of cathode powders from spent LiFePO4 batteries[J]. Green Chemistry, 2016, 18(8): 2500-2506. |
12 | 伍德佑, 刘志强, 饶帅, 等. 废旧磷酸铁锂电池正极材料回收利用技术的研究进展[J]. 有色金属(冶炼部分), 2020(10): 70-78. |
WU D Y, LIU Z Q, RAO S, et al. Research progress in recycling technology of cathode materials for spent lithium iron phosphate batteries[J]. Nonferrous Metals (Extractive Metallurgy), 2020(10): 70-78. | |
13 | 王百年, 王宇, 刘京, 等. 废旧磷酸铁锂电池中锂元素的回收技术[J]. 电源技术, 2019, 43(1): 57-59, 116. |
WANG B N, WANG Y, LIU J, et al. Recovery technology of lithium in waste lithium iron phosphate battery[J]. Chinese Journal of Power Sources, 2019, 43(1): 57-59, 116. | |
14 | WANG X, WANG X Y, ZHANG R, et al. Hydrothermal preparation and performance of LiFePO4 by using Li3PO4 recovered from spent cathode scraps as Li source[J]. Waste Management, 2018, 78: 208-216. |
15 | CAI G Q, FUNG K Y, NG K M, et al. Process development for the recycle of spent lithium ion batteries by chemical precipitation[J]. Industrial & Engineering Chemistry Research, 2014, 53(47): 18245-18259. |
16 | 王晕. PVDF黏结剂在锂离子电池中的应用研究[D]. 上海: 复旦大学, 2013。 |
WANG Y. The application of PVDF binder in lithium-ion battery[D]. Shanghai: Fudan University, 2013. | |
17 | TSUKASAKI H, FUKUDA W, MORIMOTO H, et al. Thermal behavior and microstructures of cathodes for liquid electrolyte-based lithium batteries[J]. Scientific Reports, 2018, 8: 15613. |
18 | 秦凯, 孙新华, 杨良君, 等. 高比能磷酸铁锂电池电解液浸润性能改善研究[J]. 电源技术, 2020, 44(8): 1099-1101, 1181. |
QIN K, SUN X H, YANG L J, et al. Improvement of electrolyte wettability of high specific energy LiFePO4 battery[J]. Chinese Journal of Power Sources, 2020, 44(8): 1099-1101, 1181. | |
19 | 廖红英, 谢乐琼, 何向明, 等. LiPF6基电解液应用于下一代二次电池的研究进展[J]. 电池工业, 2021, 25(2): 97-105. |
LIAO H Y, XIE L Q, HE X M, et al. Progress on LiPF6 based electrolytes for the next generation secondary batteries[J]. Chinese Battery Industry, 2021, 25(2): 97-105. | |
20 | 张蕾, 张绪平, 张思维, 等. 白藜芦醇对长期贮存锂离子电池电解液性能的影响[J]. 电化学, 2021, 27(1): 83-91. |
ZHANG L, ZHANG X P, ZHANG S W, et al. Influence of resveratrol on performance of long-term storage's lithium-ion battery electrolyte[J]. Journal of Electrochemistry, 2021, 27(1): 83-91. | |
21 | HAN J G, KIM K, LEE Y, et al. Scavenging materials to stabilize LiPF6-containing carbonate-based electrolytes for Li-ion batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2019, 31(20): doi: 10.1002/adma.201804822. |
22 | KIM H S, SHIN E J. Re-synthesis and electrochemical characteristics of LiFePO4 cathode materials recycled from scrap electrodes[J]. Bulletin of the Korean Chemical Society, 2013, 34(3): 851-855. |
23 | FISCHER M G, HUA X, WILTS B D, et al. Polymer-templated LiFePO4/C nanonetworks as high-performance cathode materials for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(2): 1646-1653. |
24 | JIE Y F, YANG S H, HU F, et al. Gas evolution characterization and phase transformation during thermal treatment of cathode plates from spent LiFePO4 batteries[J]. Thermochimica Acta, 2020, 684: doi:10.1016/j.tca.2019.178483. |
25 | 刘伟峰, 陈月霞, 孙志英. PVDF热稳定性的测定及影响因素研究[J]. 信息记录材料, 2013, 14(4): 28-30. |
LIU W F, CHEN Y X, SUN Z Y. Determination of the thermal stability of PVDF and study on its influencing factors[J]. Information Recording Materials, 2013, 14(4): 28-30. | |
26 | WANG J J, YANG J L, TANG Y J, et al. Surface aging at olivine LiFePO4: A direct visual observation of iron dissolution and the protection role of nano-carbon coating[J]. J Mater Chem A, 2013, 1(5): 1579-1586. |
27 | 乔延超, 陈若葵, 孙颉, 等. 含锂氟化渣的综合回收方法: CN109264749A[P]. 20190125. |
QIAO Y C, CHEN R K, SUN J, et al. Comprehensive recycling method of lithium-containing fluoridized slag: CN109264749A[P]. 20190125. |
[1] | Ziwei YUAN, Chuyuan LIN, Ziyan YUAN, Xiaoli SUN, Qingrong QIAN, Qinghua CHEN, Lingxing ZENG. The research process on low temperature performance of zinc ion batteries [J]. Energy Storage Science and Technology, 2023, 12(1): 278-298. |
[2] | Shiying ZHAN, Dongxu YU, Nan CHEN, Fei DU. Advances of aqueous batteries with non-metallic cation charge carriers [J]. Energy Storage Science and Technology, 2021, 10(6): 2144-2155. |
[3] | Wenchao LIAN, Libin LEI, Bo LIANG, Chao WANG, Lei WEI, Zhipeng TIAN, Jianping LIU, Huazheng YANG, Jiajian LIANG, Tao SHI. Utilization and synthesis of ammonia in proton-conducting solid oxide electrochemical devices [J]. Energy Storage Science and Technology, 2021, 10(6): 1998-2007. |
[4] | YANG Hong, LEMMON John, MIAO Ping, LIU Qinghua. The effect of carbon cloth electrode material on the performance of vanadium redox flow battery [J]. Energy Storage Science and Technology, 2020, 9(3): 707-713. |
[5] | YU Yifan, GU Yuping, LI Chilin. Progress on fluoride ion shuttle batteries [J]. Energy Storage Science and Technology, 2020, 9(1): 217-238. |
[6] | MENG Qi, LIU Xiaohui, SUN Mingze, WANG Qiyang, BI Hong. Elecrochemical performance of MXene/silver nanowire supercapacitor electrode material [J]. Energy Storage Science and Technology, 2019, 8(6): 1126-1131. |
[7] | CHEN Yongzhen, LI Hualing, SONG Wenji, TU Xiaolin, FENG Ziping. A review on recycling technology of spent lithium iron phosphate battery [J]. Energy Storage Science and Technology, 2019, 8(2): 237-247. |
[8] | SU Xiuli, YANG Linlin, ZHOU Yu, LIN Youbin, YU Shuyuan. Developments of electrodes for vanadium redox flow battery [J]. Energy Storage Science and Technology, 2019, 8(1): 65-74. |
[9] | LIU Mengyun, GU Tiantian, ZHOU Min, WANG Kangli, CHENG Shijie, JIANG Kai. Conjugated carbonyl compounds as electrode materials for sodium-ion/potassium-ion batteries [J]. Energy Storage Science and Technology, 2018, 7(6): 1171-1181. |
[10] | ZHANG Huimin1,2,3, MING Hai 1,3, ZHANG Wenfeng1,3, WEN Yuehua1,3, YANG Yusheng1,3,MING Jun4. Non-aqueous sodium-ion batteries based on the anode of non-metallic sodium [J]. Energy Storage Science and Technology, 2017, 6(6): 1159-. |
[11] | REN Yang1, XIE Yingying1,2, CHEN Zonghai1, MA Zifeng2. Applications of synchrotron X-rays and neutrons diffraction in energy storage materials research [J]. Energy Storage Science and Technology, 2017, 6(5): 855-863. |
[12] | XIE Qingshui, WANG Laisen, PENG Dongliang. Project “Basic research on high efficiency energy storage devices based on nanostructured materials” [J]. Energy Storage Science and Technology, 2017, 6(1): 162-164. |
[13] | JIN Yuhong, WANG Li, SHANG Yuming, GAO Jian, LI Jianjun, HE Xiangming. Development of spinel NiCo2O4 nanostructure material for application in supercapacitors [J]. Energy Storage Science and Technology, 2015, 4(1): 44-54. |
[14] | WU Xiaoyuan, SHEN Yue, HU Xianluo, HUANG Yunhui, YU Zhuoping. Extended-range electric vehicles and their lithium-ion batteries [J]. Energy Storage Science and Technology, 2014, 3(6): 565-574. |
[15] | JIA Zhijun, WANG Jun, WANG Yi. Research progress of the electrode materials for electrochemical capacitors [J]. Energy Storage Science and Technology, 2014, 3(4): 322-338. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||