Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (7): 2282-2294.doi: 10.19799/j.cnki.2095-4239.2021.0655
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Peng HUANG1(), Zhigen NIE1, Zheng CHEN1, Xing SHU1, Shiquan SHEN1, Jipeng YANG2, Jiangwei SHEN1()
Received:
2021-12-07
Revised:
2022-01-02
Online:
2022-07-05
Published:
2022-06-29
Contact:
Jiangwei SHEN
E-mail:1936881708@qq.com;shenjiangwei6@163.com
CLC Number:
Peng HUANG, Zhigen NIE, Zheng CHEN, Xing SHU, Shiquan SHEN, Jipeng YANG, Jiangwei SHEN. Capacity prediction of lithium battery based on optimized Elman neural network[J]. Energy Storage Science and Technology, 2022, 11(7): 2282-2294.
Table 4
Prediction error and time of different methods"
不同方法 | 电池1 | 电池2 | 电池3 | 电池4 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
RMSE/% | 时间/s | RMSE/% | 时间/s | RMSE/% | 时间/s | RMSE/% | 时间/s | ||||
LSTM NN | 0.89/0.76 | 20.95/21.57 | 0.76/0.99 | 21.14/21.77 | 1.09/1.14 | 22.53/23.25 | 0.82/0.87 | 21.76/22.41 | |||
Elman NN | 1.51/1.19 | 13.15/13.22 | 1.29/1.63 | 13.62/13.74 | 1.49/1.35 | 13.79/13.92 | 1.22/1.43 | 13.12/13.25 | |||
GA-Elman NN | 0.66/0.41 | 10.79/10.73 | 0.57/0.33 | 10.51/10.39 | 0.34/0.38 | 11.16/11.02 | 0.43/0.46 | 10.14/10.25 |
1 | CHEN Z, SUN M M, SHU X, et al. Online state of health estimation for lithium-ion batteries based on support vector machine[J]. Applied Sciences, 2018, 8(6): 925. |
2 | SHU X, LI G, SHEN J W, et al. An adaptive fusion estimation algorithm for state of charge of lithium-ion batteries considering wide operating temperature and degradation[J]. Journal of Power Sources, 2020, 462: doi: 10.1016/j.jpowsour.2020.228132. |
3 | HU X S, LI S E, YANG Y Lapproach. Advanced machine learning approach for lithium-ion battery state estimation in electric vehicles[J]. IEEE Transactions on Transportation Electrification, 2016, 2(2): 140-149 . |
4 | 马彦,陈阳,张帆,等. 基于扩展H∞粒子滤波算法的动力电池寿命预测方法[J]. 机械工程学报, 2019, 55(20): 36-43. |
MA Y, CHEN Y, ZHANG F, et al. Remaining useful life prediction of power battery based on extend H∞ particle filter algorithm[J]. Journal of Mechanical Engineering, 2019, 55(20): 36-43. | |
5 | HU X S, YUAN H, ZOU C F, et al. Co-estimation of state of charge and state of health for lithium-ion batteries based on fractional-order calculus[J]. IEEE Transactions on Vehicular Technology, 2018, 67(11): 10319-10329. |
6 | SAHA B, GOEBEL K, POLL S, et al. Prognostics methods for battery health monitoring using a Bayesian framework[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58(2): 291-296. |
7 | 韦海燕, 安晶晶, 陈静, 等. 基于改进粒子滤波算法实现锂离子电池RUL预测[J]. 汽车工程, 2019, 41(12): 1377-1383. |
WEI H Y, AN J J, CHEN J, et al. RUL prediction of lithium-ion battery based on improved particle filtering algorithm[J]. Automotive Engineering, 2019, 41(12): 1377-1383. | |
8 | 郑涛, 张里, 侯杨成, 等. 基于自适应CKF的老化锂电池SOC估计[J]. 储能科学与技术, 2020, 9(4): 1193-1199. |
ZHENG T, ZHANG L, HOU Y C, et al. SOC estimation of aging lithium battery based on adaptive CKF[J]. Energy Storage Science and Technology, 2020, 9(4): 1193-1199. | |
9 | NG S S Y, XING Y J, TSUI K L. A naive Bayes model for robust remaining useful life prediction of lithium-ion battery[J]. Applied Energy, 2014, 118: 114-123. |
10 | ZHANG Y Z, XIONG R, HE H W, et al. Lithium-ion battery remaining useful life prediction with box-cox transformation and Monte Carlo simulation[J]. IEEE Transactions on Industrial Electronics, 2019, 66(2): 1585-1597. |
11 | DAI H D, ZHAO G C, LIN M Q, et al. A novel estimation method for the state of health of lithium-ion battery using prior knowledge-based neural network and Markov chain[J]. IEEE Transactions on Industrial Electronics, 2019, 66(10): 7706-7716. |
12 | DENG Y W, YING H J, ER J Q, et al. Feature parameter extraction and intelligent estimation of the state-of-health of lithium-ion batteries[J]. Energy, 2019, 176: 91-102. |
13 | 韩云飞, 谢佳, 蔡涛, 等. 结合高斯过程回归与特征选择的锂离子电池容量估计方法[J]. 储能科学与技术, 2021, 10(4): 1432-1438. |
HAN Y F, XIE J, CAI T, et al. Capacity estimation of lithium-ion batteries based on Gaussian process regression and feature selection[J]. Energy Storage Science and Technology, 2021, 10(4): 1432-1438. | |
14 | 张新锋, 姚蒙蒙, 王钟毅, 等. 基于ACO-BP神经网络的锂离子电池容量衰退预测[J]. 储能科学与技术, 2020, 9(1): 138-144. |
ZHANG X F, YAO M M, WANG Z Y, et al. Lithium-ion battery capacity decline prediction based on ant colony optimization BP neural network algorithm[J]. Energy Storage Science and Technology, 2020, 9(1): 138-144. | |
张新锋, 姚蒙蒙, 王钟毅, 等. 基于ACO-BP神经网络的锂离子电池容量衰退预测[J]. 储能科学与技术, 2020(1): 173-179. | |
ZHANG X F, YAO M M, WANG Z Y, et al. Lithium-ion battery capacity decline prediction based on ant colony optimization BP neural network algorithm[J]. Energy Storage Science and Technology, 2020(1): 173-179. | |
15 | GUO P Y, CHENG Z, YANG L. A data-driven remaining capacity estimation approach for lithium-ion batteries based on charging health feature extraction[J]. Journal of Power Sources, 2019, 412: 442-450. |
16 | ZHOU D, YIN H T, XIE W, et al. Research on online capacity estimation of power battery based on EKF-GPR model[J]. Journal of Chemistry, 2019: doi:10.1155/2019/5327319. |
17 | LI X Y, WANG Z P, YAN J Y. Prognostic health condition for lithium battery using the partial incremental capacity and Gaussian process regression[J]. Journal of Power Sources, 2019, 421: 56-67. |
18 | LI X Y, ZHANG L, WANG Z P, et al. Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks[J]. Journal of Energy Storage, 2019, 21: 510-518. |
19 | SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4(5): 383-391. |
20 | LI Y, ABDEL-MONEM M, GOPALAKRISHNAN R, et al. A quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter[J]. Journal of Power Sources, 2018, 373: 40-53. |
21 | LI X Y, WANG Z P, ZHANG L, et al. State-of-health estimation for Li-ion batteries by combing the incremental capacity analysis method with grey relational analysis[J]. Journal of Power Sources, 2019, 410/411: 106-114. |
22 | WANG P, MENG P, SONG B W. Response surface method using grey relational analysis for decision making in weapon system selection[J]. Journal of Systems Engineering and Electronics, 2014, 25(2): 265-272. |
23 | LU C, TAO L F, FAN H Z. Li-ion battery capacity estimation: A geometrical approach[J]. Journal of Power Sources, 2014, 261: 141-147. |
24 | SUN W Z, WANG J S. Elman neural network soft-sensor model of conversion velocity in polymerization process optimized by chaos whale optimization algorithm[J]. IEEE Access, 2017, 5: 13062-13076. |
25 | LIU H, TIAN H Q, LIANG X F, et al. Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks[J]. Applied Energy, 2015, 157: 183-194. |
26 | HE W, WILLIARD N, OSTERMAN M, et al. Prognostics of lithium-ion batteries based on dempster-shafer theory and the bayesian monte carlo method[J]. Journal of Power Sources, 2011, 196(23): 10314-10321. |
[1] | Shuai HAN, Leping SUN, Jianbin LU, Xiaoxuan GUO. Multi-objective optimal dispatch strategy of gas-electric interconnected virtual power plant interval with electric vehicles [J]. Energy Storage Science and Technology, 2022, 11(5): 1428-1436. |
[2] | Xudong LI, Xiangwen ZHANG. State of health estimation method for lithium-ion batteries based on principal component analysis and whale optimization algorithm-Elman model [J]. Energy Storage Science and Technology, 2022, 11(12): 4010-4021. |
[3] | Delong ZHANG, Saif MUBAARAK, Siyu JIANG, Longze WANG, Jinxin LIU, Yongcong CHEN, Meicheng LI. Optimal allocation method of energy storage in PV station based on probabilistic power flow [J]. Energy Storage Science and Technology, 2021, 10(6): 2244-2251. |
[4] | Lianbing LI, Sijia LI, Jie LI, Kun SUN, Zhengping WANG, Haiyue YANG, Bing GAO, Shaobo YANG. RUL prediction of lithium-ion battery based on differential voltage and Elman neural network [J]. Energy Storage Science and Technology, 2021, 10(6): 2373-2384. |
[5] | Qihui YU, Li TIAN, Xiaofei LI, Xiaodong LI, Xin TAN, Yeming ZHANG. Compressed air energy storage capacity configuration and economic evaluation considering the uncertainty of wind energy [J]. Energy Storage Science and Technology, 2021, 10(5): 1614-1623. |
[6] | Yinquan HU, Heping LIU. Optimization of efficient thermal management channel for battery pack based on genetic algorithm [J]. Energy Storage Science and Technology, 2021, 10(4): 1446-1453. |
[7] | Yanjuan LU, Youqin CHEN, Tinglong PAN. Community microgrid energy management considering electric vehicles and demand response [J]. Energy Storage Science and Technology, 2021, 10(2): 617-623. |
[8] | WANG Taihua, ZHANG Shujie, CHEN Jingan. Low temperature charging aging modeling and optimization of charging strategy for lithium batteries [J]. Energy Storage Science and Technology, 2020, 9(4): 1137-1146. |
[9] | XIA Xinmao, GUAN Honghao, DING Pengfei, MENG Gaojun. Capacity allocation and optimization strategy of an energy storage system based on an improved quantum genetic algorithm [J]. Energy Storage Science and Technology, 2019, 8(3): 551-558. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||