Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (4): 1446-1453.doi: 10.19799/j.cnki.2095-4239.2021.0131
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Received:
2021-03-29
Revised:
2021-05-26
Online:
2021-07-05
Published:
2021-06-25
Contact:
Yinquan HU
E-mail:hujunping2018@163.com
CLC Number:
Yinquan HU, Heping LIU. Optimization of efficient thermal management channel for battery pack based on genetic algorithm[J]. Energy Storage Science and Technology, 2021, 10(4): 1446-1453.
1 | LI X X, ZHOU D Q, ZHANG G Q, et al. Experimental investigation of the thermal performance of silicon cold plate for battery thermal management system[J]. Applied Thermal Engineering, 2019, 155: 331-340. |
2 | AL-ZAREER M, DINCER I, ROSEN M A. Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles[J]. Journal of Power Sources, 2017, 363: 291-303. |
3 | QIAN Z, LI Y M, RAO Z H. Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling[J]. Energy Conversion and Management, 2016, 126: 622-631. |
4 | DARCOVICH K, MACNEIL D D, RECOSKIE S, et al. Comparison of cooling plate configurations for automotive battery pack thermal management[J]. Applied Thermal Engineering, 2019, 155: 185-195. |
5 | JARRETT A, KIM I Y. Influence of operating conditions on the optimum design of electric vehicle battery cooling plates[J]. Journal of Power Sources, 2014, 245: 644-655. |
6 | BAI F F, CHEN M B, SONG W J, et al. Thermal management performances of PCM/water cooling-plate using for lithium-ion battery module based on non-uniform internal heat source[J]. Applied Thermal Engineering, 2017, 126: 17-27. |
7 | HALLAJ S A, SELMAN J R. A novel thermal management system for electric vehi1cle batteries using phase-change material[J]. Journal of the Electrochemical Society, 2000, 147(9): 3231. |
8 | DENG T, RAN Y, ZHANG G D, et al. Novel leaf-like channels for cooling rectangular lithium ion batteries[J]. Applied Thermal Engineering, 2019, 150: 1186-1196. |
9 | DENG T, ZHANG G D, RAN Y, et al. Thermal performance of lithium ion battery pack by using cold plate[J]. Applied Thermal Engineering, 2019, 160: 114088. |
10 | DENG T, RAN Y, ZHANG G D, et al. Design optimization of bifurcating mini-channels cooling plate for rectangular Li-ion battery[J]. International Journal of Heat and Mass Transfer, 2019, 139: 963-973. |
11 | WANG Y, ZHANG G Q, YANG X Q. Optimization of liquid cooling technology for cylindrical power battery module[J]. Applied Thermal Engineering, 2019, 162: 114200. |
12 | PANCHAL S, MATHEW M, FRASER R, et al. Electrochemical thermal modeling and experimental measurements of 18650 cylindrical lithium-ion battery during discharge cycle for an EV[J]. Applied Thermal Engineering, 2018, 135: 123-132. |
13 | 李望, 卢耀辉, 李振生, 等. 车用锂离子电池组冷却系统传热仿真分析[J]. 装备环境工程, 2021, 18(2): 6-12. |
LI W, LU Y H, LI Z S, et al. Simulation analysis of heat transfer in cooling system of Li-ion battery pack for vehicles[J]. Equipment Environmental Engineering, 2021, 18(2): 6-12. | |
14 | 李夔宁, 何铖, 谢翌, 等. 大倍率放电工况下48 V软包电池包的热管理[J]. 储能科学与技术, 2021, 10(2): 679-688. |
LI K N, HE C, XIE Y, et al. Thermal management of a 48 V pouch lithium-ion battery pack based on high rate discharge condition[J]. Energy Storage Science and Technology, 2021, 10(2): 679-688. | |
15 | 谢金红. 电动汽车锂离子电池组散热结构优化研究[D]. 广州: 华南理工大学, 2018. |
XIE J H. Optimization investigation on the cooling structure of lithium-ion battery packages in electric vehicles[D]. Guangzhou: South China University of Technology, 2018. | |
16 | 张志鸿, 牟俊彦, 孟玉发. 风冷圆柱形锂离子电池系统热失控扩展特性[J]. 储能科学与技术, 2021, 10(2): 658-663. |
ZHANG Z H, MOU J Y, MENG Y F. Thermal runaway propagation characteristics of an air-cooled cylindrical lithium-ion battery system[J]. Energy Storage Science and Technology, 2021, 10(2): 658-663. | |
17 | 冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京: 清华大学, 2016. |
FENG X N. Thermal runaway initiation and propagation of lithium-ion traction battery for electric vehicle: Test, modeling and prevention[D]. Beijing: Tsinghua University, 2016. |
[1] | Jiayu YUAN, Xinguang LI, Wenchao WANG, Chengkuo FU. Simulation of serpentine cooling structure of battery pack considering mass flow [J]. Energy Storage Science and Technology, 2022, 11(7): 2274-2281. |
[2] | Xianxi LIU, Anliang SUN, Chuan TIAN. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate [J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273. |
[3] | Long CHEN, Quan XIA, Yi REN, Gaoping CAO, Jingyi QIU, Hao ZHANG. Research prospect on reliability of Li-ion battery packs under coupling of multiple physical fields [J]. Energy Storage Science and Technology, 2022, 11(7): 2316-2323. |
[4] | Peng HUANG, Zhigen NIE, Zheng CHEN, Xing SHU, Shiquan SHEN, Jipeng YANG, Jiangwei SHEN. Capacity prediction of lithium battery based on optimized Elman neural network [J]. Energy Storage Science and Technology, 2022, 11(7): 2282-2294. |
[5] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[6] | FENG Jinxin, LING Ziye, FANG Xiaoming, ZHANG Zhengguo. Research progress on phase-change emulsions [J]. Energy Storage Science and Technology, 2022, 11(6): 1968-1979. |
[7] | Qiaomin KE, Jian GUO, Yiwei WANG, Wenjiong CAO, Man CHEN, Fangming JIANG. The effect of liquid-cooled thermal management on thermal runaway of power battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1634-1640. |
[8] | Shuai HAN, Leping SUN, Jianbin LU, Xiaoxuan GUO. Multi-objective optimal dispatch strategy of gas-electric interconnected virtual power plant interval with electric vehicles [J]. Energy Storage Science and Technology, 2022, 11(5): 1428-1436. |
[9] | Zheng ZHENG, Xiaoshuai WANG, Bin LI, Tao HUANG, Peike LI. Adaptive interleaved control equalization for lithium-ion battery packs based on three-winding transformers [J]. Energy Storage Science and Technology, 2022, 11(4): 1131-1140. |
[10] | Jianglong DU, Yiting LIN, Wenqi YANG, Cheng LIAN, Honglai LIU. Application of simulation in thermal safety design of lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 866-877. |
[11] | Xinlong ZHU, Junyi WANG, Jiashuang PAN, Chuanzhi KANG, Yitao ZOU, Kaijie YANG, Hong SHI. Present situation and development of thermal management system for battery energy storage system [J]. Energy Storage Science and Technology, 2022, 11(1): 107-118. |
[12] | Zhiguo AN, Xian ZHANG, Hui ZHU, Chunjie ZHANG. Heat dissipation performance of honeycomb-like thermal management system combined CPCM with water cooling for lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 211-220. |
[13] | Xiaoguang ZHANG, Xiaonan PAN, Jinming LI, Li LIU, Yan HE. Effect of battery arrangement on the phase change thermal management performance of lithium-ion battery packs [J]. Energy Storage Science and Technology, 2022, 11(1): 127-135. |
[14] | Xiaogang WU, Zhihao CUI, Yizhao SUN, Kun ZHANG, Jiuyu DU. Charging strategy and thermal management technology of power battery in high power charging process of electric vehicle [J]. Energy Storage Science and Technology, 2021, 10(6): 2218-2234. |
[15] | Guoliang XU, Yujie ZHANG, Xiaoming HUANG, Rui HE. Thermal design and operation strategy of automotive lithium battery based on critical heat transfer coefficient and intervention time [J]. Energy Storage Science and Technology, 2021, 10(6): 2252-2259. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||