Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (3): 676-684.doi: 10.19799/j.cnki.2095-4239.2022.0673
• Energy Storage Materials and Devices • Previous Articles Next Articles
Dan LIAO(), Zhangmao HU(), Wei WANG, Hong TIAN, Yanni XUAN, Donglin CHEN
Received:
2022-11-15
Revised:
2022-12-05
Online:
2023-03-05
Published:
2022-12-29
Contact:
Zhangmao HU
E-mail:liaodd98@163.com;huzhangmao@163.com
CLC Number:
Dan LIAO, Zhangmao HU, Wei WANG, Hong TIAN, Yanni XUAN, Donglin CHEN. Research on heat transfer and flow characteristics of cubic fillers[J]. Energy Storage Science and Technology, 2023, 12(3): 676-684.
1 | 姜竹, 邹博杨, 丛琳, 等. 储热技术研究进展与展望[J]. 储能科学与技术, 2022, 11(9): 2746-2771. |
JIANG Z, ZOU B Y, CONG L, et al. Recent progress and outlook of thermal energy storage technologies[J]. Energy Storage Science and Technology, 2022, 11(9): 2746-2771. | |
2 | 杜保存, 黄丽娟, 雷勇刚, 等. 填充床熔盐蓄热器的动态温度与应力特性[J]. 储能科学与技术, 2022, 11(7): 2141-2150. |
DU B C, HUANG L J, LEI Y G, et al. Dynamic study on the thermal and stress performances of the molten salt packed-bed thermal storage tank[J]. Energy Storage Science and Technology, 2022, 11(7): 2141-2150. | |
3 | AMIRI L, GHOREISHI-MADISEH S A, SASMITO A P, et al. A porous medium based heat transfer and fluid flow model for thermal energy storage in packed rock beds[J]. IOP Conference Series: Earth and Environmental Science, 2019, 268(1): 012100. |
4 | 吴玉庭, 任楠, 马重芳. 熔融盐显热蓄热技术的研究与应用进展[J]. 储能科学与技术, 2013, 2(6): 586-592. |
WU Y T, REN N, MA C F. Research and application of molten salts for sensible heat storage[J]. Energy Storage Science and Technology, 2013, 2(6): 586-592. | |
5 | TAN H B, DING Z, WEN N. Numerical study on the thermodynamic performance of a packed bed cryogenic energy storage system[J]. Applied Thermal Engineering, 2022, 214: doi: 10.1016/j.applthermaleng.2022.118903. |
6 | ELSIHY E S, LIAO Z R, XU C, et al. Dynamic characteristics of solid packed-bed thermocline tank using molten-salt as a heat transfer fluid[J]. International Journal of Heat and Mass Transfer, 2021, 165: doi: 10.1016/j.ijheatmasstransfer.2020.120677. |
7 | FIERRO M, GUTIERREZ C, JOVICIC V, et al. Hollow spheres as inert packed bed from lean to rich combustion in porous media[J]. International Journal of Heat and Mass Transfer, 2022, 195: doi: 10.1016/j.ijheatmasstransfer.2022.123067. |
8 | YANG J, WANG Q W, ZENG M, et al. Computational study of forced convective heat transfer in structured packed beds with spherical or ellipsoidal particles[J]. Chemical Engineering Science, 2010, 65(2): 726-738. |
9 | DIXON A G, WALLS G, STANNESS H, et al. Experimental validation of high Reynolds number CFD simulations of heat transfer in a pilot-scale fixed bed tube[J]. Chemical Engineering Journal, 2012, 200/201/202: 344-356. |
10 | GUO Z H, SUN Z N, ZHANG N, et al. CFD analysis of fluid flow and particle-to-fluid heat transfer in packed bed with radial layered configuration[J]. Chemical Engineering Science, 2019, 197: 357-370. |
11 | 李楠, 史俊瑞, 刘洋, 等. 结构化填充床内层流流动特性的研究[J]. 热能动力工程, 2016, 31(10): 79-83, 127. |
LI N, SHI J R, LIU Y, et al. Study of laminar flow characteristics in a structured packed bed[J]. Journal of Engineering for Thermal Energy and Power, 2016, 31(10): 79-83, 127. | |
12 | SECKENDORFF J, HINRICHSEN O. Review on the structure of random packed-beds[J]. The Canadian Journal of Chemical Engineering, 2021, 99(S1): 703-733. |
13 | ALKHALAF A, REFAEY H A, AL-DUROBI N, et al. Influence of contact point treatment on the cross flow mixing in a simple cubic packed bed: CFD simulation and experimental validation[J]. Granular Matter, 2018, 20(2): 22. |
14 | CHEN L, LEE W, LEE J. Analysis of the thermal field and heat transfer characteristics of pebble beds packed in a face-centered cubic structure[J]. Applied Thermal Engineering, 2017, 121: 473-483. |
15 | 杨光, 杨剑, 徐安军. 密排六方颗粒填充床内对流换热的模拟研究[J]. 武汉科技大学学报, 2019, 42(4): 314-320. |
YANG G, YANG J, XU A J. Simulation of convective heat transfer in a packed bed with hexagonal close-packed particles[J]. Journal of Wuhan University of Science and Technology, 2019, 42(4): 314-320. | |
16 | BALCERZAKM, RUNKA T, ŚNIADECKI Z. Influence of carbon catalysts on the improvement of hydrogen storage properties in a body-centered cubic solid solution alloy[J]. Carbon, 2021, 182: 422-434. |
17 | CHEN L S, ZHAO J H, YUAN Y J, et al. Numerical study on the thermal field and heat transfer characteristics of a hexagonal-close-packed pebble bed[J]. Computation, 2022, 10(1): 1. |
18 | CHEN L S, LEE J. Effects of inserted sphere on thermal field and heat-transfer characteristics of face-centered-cubic-structured pebble bed[J]. Applied Thermal Engineering, 2020, 172: doi: 10.1016/j.applthermaleng.2020.115151. |
19 | YANG J, WANG J, BU S S, et al. Experimental analysis of forced convective heat transfer in novel structured packed beds of particles[J]. Chemical Engineering Science, 2012, 71: 126-137. |
20 | WANG J Y, YANG J, SUNDEN B, et al. Hydraulic and heat transfer characteristics in structured packed beds with methane steam reforming reaction for energy storage[J]. International Communications in Heat and Mass Transfer, 2021, 121: doi: 10.1016/j.icheatmasstransfer.2021.105109. |
21 | WANG J Y, YANG J, CHEN Z L, et al. Experimental and numerical study on pressure drop and heat transfer performance of grille-sphere composite structured packed bed[J]. Applied Energy, 2018, 227: 719-730. |
22 | YIN H B, DING J, JIANG R H, et al. Thermocline characteristics of molten-salt thermal energy storage in porous packed-bed tank[J]. Applied Thermal Engineering, 2017, 110: 855-863. |
23 | RONG L W, DONG K J, YU A B. Lattice-Boltzmann computation of hydraulic pore-to-pore conductance in packed beds of uniform spheres[J]. Chemical Engineering Science, 2020, 224: doi:10.1016/j.ces.2020.115798. |
24 | DASGUPTA S, ATTA A. Influence of periodic operation on flow distribution in single phase packed beds[J]. Chemical Engineering and Processing-Process Intensification, 2018, 128: 149-161. |
25 | ASAKUMA Y, HONDA I, YAMAMOTO T. Numerical approach to predicting the effective thermal conductivity of a packed bed of binary particles[J]. Powder Technology, 2019, 354: 886-892. |
26 | 陶文铨. 数值传热学[M]. 第2版. 西安: 西安交通大学出版社, 2001. |
TAO W Q. Numerical heat transfer[M]. 2nd ed. Xi'an: Xi'an Jiaotong University Press, 2001. | |
27 | SUEKANE T, YOKOUCHI Y, HIRAI S. Inertial flow structures in a simple-packed bed of spheres[J]. AIChE Journal, 2003, 49(1): 10-17. |
28 | GUNJAL P R, RANADE V V, CHAUDHARI R V. Computational study of a single-phase flow in packed beds of spheres[J]. AIChE Journal, 2005, 51(2): 365-378. |
29 | 何雅玲, 陶文铨, 王煜, 等. 换热设备综合评价指标的研究进展[C]// 西安: 中国工程热物理学会(传热传质学), 2011. |
HE Y L, TAO W Q, WANG YU, et al. Comprehensive evaluation index and research progress of heat exchanger[C]//Xi'an: Chinese Society of Engineering Thermophysics(Heat and Mass Transfer), 2011. |
[1] | Fan WANG, Zhao DU, Kang YANG, Xinyi WANG, Rukun HU, Xiaohu YANG. Experimental study on solidification of metal foam composite phase change material in a horizontal heat storage tube [J]. Energy Storage Science and Technology, 2022, 11(11): 3667-3673. |
[2] | Liangtao XIONG, Jifen WANG, Huaqing XIE, Xuelai ZHANG. Effect of vacancy defects on thermal conductivity of single-layer graphene by molecular dynamics [J]. Energy Storage Science and Technology, 2022, 11(5): 1322-1330. |
[3] | Zhao DU, Kang YANG, Gao SHU, Pan WEI, Xiaohu YANG. Experimental Study on the Heat Storage and Release of the Solid-Liquid Phase Change in Metal-Foam-Filled Tube [J]. Energy Storage Science and Technology, 2022, 11(2): 531-537. |
[4] | Enda CI, Hui WANG, Xiaoqing LI, Ying ZHANG, Zhenying ZHANG, Jianqiang LI. Preparation and property enhancement of magnesium nitrate hexahydrate-lithium nitrate eutectic/expanded graphite composite phase change materials [J]. Energy Storage Science and Technology, 2022, 11(1): 30-37. |
[5] | Xiaotong CHEN, Yuanwei LU, Cong HE, Wenbing SONG, Yuting WU, Guichun YANG. Heat-release stability of single tank molten salt heat storage system based on continuous regulation of heat exchange area [J]. Energy Storage Science and Technology, 2021, 10(5): 1753-1759. |
[6] | LI Xinyu, LI Peng, HAN Zhongxian, LIU Tao, WANG Lei, CHEN Lin. Effect of bending angle on heat transfer performance of flat heat pipe [J]. Energy Storage Science and Technology, 2020, 9(3): 840-847. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||