1 |
李松松. 碳纤维复合材料高速转子的力学特性研究及其储能密度优化[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2003.
|
|
LI S S. High speed carbon fiber composite rotor's mechanics character research and energy-storage density optimization[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2003.
|
2 |
陈启军, 李成, 铁瑛, 等. 基于逐渐损伤理论的复合材料飞轮转子渐进失效分析[J]. 机械工程学报, 2013, 49(12): 60-65.
|
|
CHEN Q J, LI C, TIE Y, et al. Progressive failure analysis of composite flywheel rotor based on progressive damage theory[J]. Journal of Mechanical Engineering, 2013, 49(12): 60-65.
|
3 |
PÉREZ-APARICIO J L, RIPOLL L. Exact, integrated and complete solutions for composite flywheels[J]. Composite Structures, 2011, 93(5): 1404-1415.
|
4 |
KIM S J, HAYAT K, NASIR S U, et al. Design and fabrication of hybrid composite hubs for a multi-rim flywheel energy storage system[J]. Composite Structures, 2014, 107: 19-29.
|
5 |
唐长亮, 戴兴建, 汪勇. 多层混杂复合材料飞轮力学设计与旋转试验[J]. 清华大学学报(自然科学版), 2015, 55(3): 361-367.
|
|
TANG C L, DAI X J, WANG Y. Mechanical design and spin test of a multilayer commingled composite flywheel[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(3): 361-367.
|
6 |
HIROSHIMA N, HATTA H, KOYAMA M, et al. Spin test of three-dimensional composite rotor for flywheel energy storage system[J]. Composite Structures, 2016, 136: 626-634.
|
7 |
戴兴建, 魏鲲鹏, 汪勇. 平纹机织叠层复合材料飞轮弹性参数预测及测量[J]. 复合材料学报, 2019, 36(12): 2833-2842.
|
|
DAI X J, WEI K P, WANG Y. Elastic parameters prediction and measurement of plain woven laminated composite flywheel[J]. Acta Materiae Compositae Sinica, 2019, 36(12): 2833-2842.
|
8 |
FILIPPATOS A, GRÜBER B, LICH J, et al. Design and testing of polar-orthotropic multi-layered composites under rotational load[J]. Materials & Design, 2021, 207: doi:10.1016/j.matdes.2021.109853.
|
9 |
KALDELLIS J K. Stand-alone and hybrid wind energy systems: Technology, energy storage and applications[M]. Cambridge, UK: Woodhead Publishing Limited, 2010.
|
10 |
徐芝纶. 弹性力学简明教程[M]. 第3版. 北京: 高等教育出版社, 2002.
|
|
XU Z L. A concise course in elasticity[M]. 3rd ed. Beijing: Higher Education Press, 2002.
|
11 |
左静静. 复合材料高速储能飞轮设计与制备技术研究[D]. 上海: 上海交通大学, 2019.
|
|
ZUO J J. Design and fabrication of high-speed composite energy storage flywheel[D]. Shanghai: Shanghai Jiao Tong University, 2019.
|
12 |
杨立平, 任正义. 多层复合材料飞轮的应力分析与优化设计[J]. 机械科学与技术, 2021, 40(12): 1863-1870.
|
|
YANG L P, REN Z Y. Stress analysis and optimal design of multi-layer composite flywheel[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(12): 1863-1870.
|
13 |
戴兴建, 姜新建, 张剀. 飞轮储能系统技术与工程应用[M]. 北京: 化学工业出版社, 2021.
|
|
DAI X J, JIANG X J, ZHANG K. Flywheel energy storage technology and engineering application[M]. Beijing: Chemical Industry Press, 2021.
|
14 |
李东岳. 复合材料飞轮转子结构强度及模态分析[D]. 青岛: 青岛科技大学, 2018.
|
|
LI D Y. Structural strength and modal analysis of composite flywheel rotor[D]. Qingdao: Qingdao University of Science & Technology, 2018.
|
15 |
SKINNER M, MERTINY P. Effects of viscoelasticity on the stress evolution over the lifetime of filament-wound composite flywheel rotors for energy storage[J]. Applied Sciences, 2021, 11(20): 9544.
|