Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (2): 416-424.doi: 10.19799/j.cnki.2095-4239.2023.0636
• Energy Storage Materials and Devices • Previous Articles Next Articles
Feng LI(), Yuanwei LU(), Yanquan WANG, Yancheng MA, Yuting WU
Received:
2023-09-17
Revised:
2023-10-16
Online:
2024-02-28
Published:
2024-03-01
Contact:
Yuanwei LU
E-mail:lifeng201@emails.bjut.edu.cn;luyuanwei@bjut.edu.cn
CLC Number:
Feng LI, Yuanwei LU, Yanquan WANG, Yancheng MA, Yuting WU. Effect of airfoil structure on flow and heat transfer characteristics of printed circuit heat exchanger[J]. Energy Storage Science and Technology, 2024, 13(2): 416-424.
1 | 赵新宝, 鲁金涛, 袁勇, 等. 超临界二氧化碳布雷顿循环在发电机组中的应用和关键热端部件选材分析[J]. 中国电机工程学报, 2016, 36(1): 154-162. |
ZHAO X B, LU J T, YUAN Y, et al. Analysis of supercritical carbon dioxide brayton cycle and candidate materials of key hot components for power plants[J]. Proceedings of the CSEE, 2016, 36(1): 154-162. | |
2 | 郝佳豪, 越云凯, 张家俊, 等. 二氧化碳储能技术研究现状与发展前景[J]. 储能科学与技术, 2022, 11(10): 3285-3296. |
HAO J H, YUE Y K, ZHANG J J, et al. Research status and development prospect of carbon dioxide energy-storage technology[J]. Energy Storage Science and Technology, 2022, 11(10): 3285-3296. | |
3 | HE Y L, WANG K, QIU Y, et al. Review of the solar flux distribution in concentrated solar power: Non-uniform features, challenges, and solutions[J]. Applied Thermal Engineering, 2019, 149: 448-474. |
4 | CACCIA M, TABANDEH-KHORSHID M, ITSKOS G, et al. Ceramic–metal composites for heat exchangers in concentrated solar power plants[J]. Nature, 2018, 562: 406-409. |
5 | GUO Z P, ZHAO Y, ZHU Y X, et al. Optimal design of supercritical CO2 power cycle for next generation nuclear power conversion systems[J]. Progress in Nuclear Energy, 2018, 108: 111-121. |
6 | 刘丽辉, 张航, 彭子安, 等. 板式相变储能换热器的性能优化[J]. 储能科学与技术, 2021, 10(5): 1745-1752. |
LIU L H, ZHANG H, PENG Z A, et al. Energy storage optimization of a plate-type phase change heat exchanger[J]. Energy Storage Science and Technology, 2021, 10(5): 1745-1752. | |
7 | MANENTE G, FORTUNA F M. Supercritical CO2 power cycles for waste heat recovery: A systematic comparison between traditional and novel layouts with dual expansion[J]. Energy Conversion and Management, 2019, 197: 111777. |
8 | AHN Y, LEE J, KIM S G, et al. Design consideration of supercritical CO2 power cycle integral experiment loop[J]. Energy, 2015, 86: 115-127. |
9 | 徐婷婷, 赵红霞, 韩吉田, 等. 结构和工况参数对印刷电路板式换热器性能的影响[J]. 热力发电, 2020, 49(12): 28-35. |
XU T T, ZHAO H X, HAN J T, et al. Influence of structural and operating condition parameters on performance of printed circuit heat exchanger[J]. Thermal Power Generation, 2020, 49(12): 28-35. | |
10 | 刘妍君, 邵应娟, 钟文琪. 翼型印刷电路板式换热器内流动与换热特性[J]. 东南大学学报(自然科学版), 2022, 52(2): 320-327. |
LIU Y J, SHAO Y J, ZHONG W Q. Flow and heat transfer characteristics of airfoil printed circuit heat exchangers[J]. Journal of Southeast University (Natural Science Edition), 2022, 52(2): 320-327. | |
11 | SUN E H, XU J L, LI M J, et al. Connected-top-bottom-cycle to cascade utilize flue gas heat for supercritical carbon dioxide coal fired power plant[J]. Energy Conversion and Management, 2018, 172: 138-154. |
12 | WANG W Q, QIU Y, HE Y L, et al. Experimental study on the heat transfer performance of a molten-salt printed circuit heat exchanger with airfoil fins for concentrating solar power[J]. International Journal of Heat and Mass Transfer, 2019, 135: 837-846. |
13 | CHEN F, ZHANG L S, HUAI X L, et al. Comprehensive performance comparison of airfoil fin PCHEs with NACA 00XX series airfoil[J]. Nuclear Engineering and Design, 2017, 315: 42-50. |
14 | CUI X Y, GUO J F, HUAI X L, et al. Numerical study on novel airfoil fins for printed circuit heat exchanger using supercritical CO2[J]. International Journal of Heat and Mass Transfer, 2018, 121: 354-366. |
15 | LI Z, LU D G, WANG Z C, et al. Analysis on flow and heat transfer performance of SCO2 in airfoil channels with different fin angles of attack[J]. Energy, 2023, 282: 128600. |
16 | XU X Y, MA T, LI L, et al. Optimization of fin arrangement and channel configuration in an airfoil fin PCHE for supercritical CO2 cycle[J]. Applied Thermal Engineering, 2014, 70(1): 867-875. |
17 | KIM T H, KWON J G, YOON S H, et al. Numerical analysis of air-foil shaped fin performance in printed circuit heat exchanger in a supercritical carbon dioxide power cycle[J]. Nuclear Engineering and Design, 2015, 288: 110-118. |
18 | 时红远, 刘华, 熊建国, 等. 丁胞与翼形肋片相结合的印刷电路板式换热器流动与换热特性的研究[J]. 工程热物理学报, 2019, 40(4): 857-862. |
SHI H Y, LIU H, XIONG J G, et al. Study on flow and heat transfer characteristics of an airfoil printed circuit heat exchanger with dimples[J]. Journal of Engineering Thermophysics, 2019, 40(4): 857-862. | |
19 | NIST web book[EB/OL]. http: webbook.nist.gov/chemistry/fluid. |
20 | ISHIZUKA T, KATO Y, MUTO Y, et al. Thermal-hydraulic characteristics of a printed circuit heat exchanger in a supercritical CO2 loop[C]//The 11th International Topical Meeting on Nuclear Reactor Thermal-Hydraulic, 2005 |
21 | 张永. 翼型流道印刷板式换热器内超临界氮的流动与换热性能研究[D]. 镇江: 江苏科技大学, 2019. |
ZHANG Y. Study on performance of flow and heat transfer of supercritical nitrogen in airfoil fin printed plate heat exchanger[D]. Zhenjiang: Jiangsu University of Science and Technology, 2019. | |
22 | GU H D, CHEN Y P, WU J F, et al. Performance investigation on twisted elliptical tube heat exchangers with coupling-vortex square tube layout[J]. International Journal of Heat and Mass Transfer, 2020, 151: 119473. |
23 | GU H D, CHEN Y P, SUNDÉN B, et al. Influence of alternating V-rows tube layout on thermal-hydraulic characteristics of twisted elliptical tube heat exchangers[J]. International Journal of Heat and Mass Transfer, 2020, 159: 120070. |
24 | GU H D, CHEN Y P, WU J F, et al. Numerical study on performances of small incline angle helical baffle electric heaters with axial separation[J]. Applied Thermal Engineering, 2017, 126: 963-975. |
25 | HESSELGREAVES J E. Rationalisation of second law analysis of heat exchangers[J]. International Journal of Heat and Mass Transfer, 2000, 43(22): 4189-4204. |
[1] | Jing BAI, Huifang FAN, Siqi CUI, Chuang XU, Yi ZHANG, Size GUAN, Hanfei YANG, Yifei JIA, Shuwei GENG, Huifan ZHENG. Experimental study on heat dissipation performance of automotive fuel cells [J]. Energy Storage Science and Technology, 2024, 13(2): 390-395. |
[2] | Zian PENG, Wenchao DUAN, Jie LI, Xiaoqin SUN, Mengjie SONG. Energy storage characteristics of a shell-and-tube phase change energy storage heat exchanger for data centers [J]. Energy Storage Science and Technology, 2023, 12(6): 1765-1773. |
[3] | Mingfei LI, Mumin RAO, Wanmei SUN, Shuxin CUI, Wei CHEN. Analysis method based on porous medium modeling for thermal management system of large capacity battery energy storage [J]. Energy Storage Science and Technology, 2022, 11(8): 2526-2536. |
[4] | WU Yuting, KOU Zhenfeng, ZHANG Cancan, WU Yiyang. Analysis of the dynamic distribution parameters of a solid sodium chloride column heat exchanger [J]. Energy Storage Science and Technology, 2022, 11(6): 1988-1995. |
[5] | Fan WANG, Zhao DU, Kang YANG, Xinyi WANG, Rukun HU, Xiaohu YANG. Experimental study on solidification of metal foam composite phase change material in a horizontal heat storage tube [J]. Energy Storage Science and Technology, 2022, 11(11): 3667-3673. |
[6] | Lihui LIU, Hang ZHANG, Zian PENG, Jie LI, Xiaoqin SUN. Energy storage optimization of a plate-type phase change heat exchanger [J]. Energy Storage Science and Technology, 2021, 10(5): 1745-1752. |
[7] | Yuting WU, Gege SONG, Cancan ZHANG, Zhenfeng KOU, Yuanwei LU. Optimal design of packed bed cold storage heat exchangers with solid NaClparticles in supercritical compressed air energy storage system [J]. Energy Storage Science and Technology, 2021, 10(4): 1374-1379. |
[8] | Junlei WANG, Xianggui XU, Tong SUN, Hua YAO, Minghang SONG, Yan WANG, Yun HUANG. Simulation of heat storage process in spiral fin phase change heat storage unit [J]. Energy Storage Science and Technology, 2021, 10(2): 514-522. |
[9] | Wen'jie YE, Xiao YANG, Fuhua SUN, Dongmei YANG, Wei DU, Bo YANG, Yang LIU, Qiyang WANG. Heat release property of phase change materials based on a microchannel heat exchanger [J]. Energy Storage Science and Technology, 2020, 9(6): 1747-1754. |
[10] | MENG Qiang, CHEN Mengdong, HU Xiao, WANG Le, YANG Cenyu, XU Guizhi. Numerical simulation of forced convective heat transfer of molten salt in tubes [J]. Energy Storage Science and Technology, 2019, 8(3): 544-550. |
[11] | LI Yang, WANG Caixia, ZONG Jun, YANG Zhixun, CHEN Lihua, HAN Yuchen, ZHANG Wei. A comparative analysis of different heat exchangers containing phase change materials [J]. Energy Storage Science and Technology, 2019, 8(2): 347-356. |
[12] | XU Jingying, WANG Wei, HUANG Yun, PENG Zhijian, LI Yueyue, YAO Hua, WANG Peilun. Optimization simulation of tube-type phase change heat storage unit [J]. Energy Storage Science and Technology, 2018, 7(S1): 84-91. |
[13] | ZHAO Liang, WANG Haiyang, FANG Xiangchen, WANG Gang, XU Hong. Modification of fly ash as a carrier of paraffin wax based phase change energy storage material for waste heat recovery [J]. Energy Storage Science and Technology, 2013, 2(6): 598-602. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||