Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (3): 858-869.doi: 10.19799/j.cnki.2095-4239.2023.0658
• Energy Storage System and Engineering • Previous Articles Next Articles
Ran SUN1(), Jianbo WANG1, Yanzhao MA2, Xiaoke ZHANG3, Huaizhong HU2()
Received:
2023-09-26
Revised:
2023-11-23
Online:
2024-03-28
Published:
2024-03-28
Contact:
Huaizhong HU
E-mail:persiasun@126.com;huhuaizhong@xjtu.edu.cn
CLC Number:
Ran SUN, Jianbo WANG, Yanzhao MA, Xiaoke ZHANG, Huaizhong HU. Adaptive control strategy for primary frequency regulation for new energy storage stations based on reinforcement learning[J]. Energy Storage Science and Technology, 2024, 13(3): 858-869.
1 | 舒印彪, 赵勇, 赵良, 等. "双碳"目标下我国能源电力低碳转型路径[J]. 中国电机工程学报, 2023, 43(5): 1663-1672. |
SHU Y B, ZHAO Y, ZHAO L, et al. Study on low carbon energy transition path toward carbon peak and carbon neutrality[J]. Proceedings of the CSEE, 2023, 43(5): 1663-1672. | |
2 | 韩泽雷, 鞠平, 秦川, 等. 面向新型电力系统的频率安全研究综述与展望[J]. 电力自动化设备, 2023, 43(9): 112-124. |
HAN Z L, JU P, QIN C, et al. Review and prospect of research on frequency security of new power system[J]. Electric Power Automation Equipment, 2023, 43(9): 112-124. | |
3 | 叶林, 王凯丰, 赖业宁, 等. 低惯量下电力系统频率特性分析及电池储能调频控制策略综述[J]. 电网技术, 2023, 47(2): 446-464. |
YE L, WANG K F, LAI Y N, et al. Review of frequency characteristics analysis and battery energy storage frequency regulation control strategies in power system under low inertia level[J]. Power System Technology, 2023, 47(2): 446-464. | |
4 | 黄际元, 李欣然, 曹一家, 等. 考虑储能参与快速调频动作时机与深度的容量配置方法[J]. 电工技术学报, 2015, 30(12): 454-464. |
HUANG J Y, LI X R, CAO Y J, et al. Capacity allocation of energy storage system considering its action moment and output depth in rapid frequency regulation[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 454-464. | |
5 | 李军徽, 侯涛, 穆钢, 等. 基于权重因子和荷电状态恢复的储能系统参与一次调频策略[J]. 电力系统自动化, 2020, 44(19): 63-72. |
LI J H, HOU T, MU G, et al. Primary frequency regulation strategy with energy storage system based on weight factors and state of charge recovery[J]. Automation of Electric Power Systems, 2020, 44(19): 63-72. | |
6 | 李欣然, 崔曦文, 黄际元, 等. 电池储能电源参与电网一次调频的自适应控制策略[J]. 电工技术学报, 2019, 34(18): 3897-3908. |
LI X R, CUI X W, HUANG J Y, et al. The self-adaption control strategy of energy storage batteries participating in the primary frequency regulation[J]. Transactions of China Electrotechnical Society, 2019, 34(18): 3897-3908. | |
7 | 王育飞, 杨铭诚, 薛花, 等. 计及SOC的电池储能系统一次调频自适应综合控制策略[J]. 电力自动化设备, 2021, 41(10): 192-198, 219. |
WANG Y F, YANG M C, XUE H, et al. Self-adaptive integrated control strategy of battery energy storage system considering SOC for primary frequency regulation[J]. Electric Power Automation Equipment, 2021, 41(10): 192-198, 219. | |
8 | 吴启帆, 宋新立, 张静冉, 等. 电池储能参与电网一次调频的自适应综合控制策略研究[J]. 电网技术, 2020, 44(10): 3829-3836. |
WU Q F, SONG X L, ZHANG J R, et al. Study on self-adaptation comprehensive strategy of battery energy storage in primary frequency regulation of power grid[J]. Power System Technology, 2020, 44(10): 3829-3836. | |
9 | 王佳宁, 杨仁海, 姚张浩, 等. 基于深度强化学习的有源中点钳位逆变器效率优化设计[J]. 电子与信息学报, 2023, 45(9): 3311-3320. |
WANG J N, YANG R H, YAO Z H, et al. Efficiency optimized design of active neutral point clamped inverter based on deep reinforcement learning[J]. Journal of Electronics & Information Technology, 2023, 45(9): 3311-3320. | |
10 | WANG Y Y, LIU S Q, CHU M Z, et al. Primary frequency control of renewable energy based on deep reinforcement learning[C]//2021 China Automation Congress (CAC). Beijing, China. IEEE, 2021: 5183-5188. |
11 | SHI Z Y, XIE X Z, LU H B, et al. Deep reinforcement learning-based multidimensional resource management for energy harvesting cognitive NOMA communications[J]. IEEE Transactions on Communications, 2022, 70(5): 3110-3125. |
12 | 谭庄熙. 电池储能参与电网调频的综合协同控制方法研究[D]. 长沙: 湖南大学, 2020. |
TAN Z X. Research on integrated collaborative control strategy of battery energy storage system participating in frequency regulation[D].Changsha: Hunan University, 2020. | |
13 | KUNDUR P. 电力系统稳定与控制[M]. 北京: 中国电力出版社, 2002. |
KUNDUR P. Power system stability and control[M]. Beijing: China Electric Power Press, 2002. | |
14 | LIU H, HU Z C, SONG Y H, et al. Decentralized vehicle-to-grid control for primary frequency regulation considering charging demands[J]. IEEE Transactions on Power Systems, 2013, 28(3): 3480-3489. |
15 | TANG Y, DAI J F, NING J, et al. An extended system frequency response model considering wind power participation in frequency regulation[J]. Energies, 2017, 10(11): 1797. |
16 | 孙雪薇. 双馈风电机组惯量和一次频率调节与场站储能协调控制方法研究[D]. 保定: 华北电力大学, 2021. |
SUN X W. Research on coordinated control method of inertia and primary frequency regulation of doubly-fed wind turbine and energy storage in station[D]. Baoding: North China Electric Power University, 2021. | |
17 | 马智慧, 李欣然, 谭庄熙, 等. 考虑储能调频死区的一次调频控制方法[J]. 电工技术学报, 2019, 34(10): 2102-2115. |
MA Z H, LI X R, TAN Z X, et al. Integrated control of primary frequency regulation considering dead band of energy storage[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2102-2115. | |
18 | 徐飘. 电池储能参与电网调频综合自适应控制策略研究[D]. 长沙: 湖南大学, 2019. |
XU P. Research on battery energy storage participating in integrated adaptive control strategy of frequency regulation in power system[D]. Changsha: Hunan University, 2019. | |
19 | 黄武枫. 风电场风速概率分布及其拟合模型研究[D]. 南宁: 广西大学, 2021. |
HUANG W F. Research on probability distribution of wind farm and its fitting models[D]. Nanning: Guangxi University, 2021. | |
20 | LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[J]. ArXiv e-Prints, 2015: doi:10.48550/arXiv. 1509.02971. |
[1] | Bin LI, Jilei YE, Yu ZHANG, Shanshan SHI, Haojing WANG, Lili LIU, Mingzhe LI. Microgrid-coordinated control strategy with distributed new energy and electro-mechanical hybrid energy storage [J]. Energy Storage Science and Technology, 2023, 12(5): 1510-1515. |
[2] | Zihao LIU, Xuesong ZHANG, Da LIN, Liqing SUN, Zhengyang LI, Rui XIONG. Joint energy and power state estimation method for energy storage battery based on extended Kalman filter [J]. Energy Storage Science and Technology, 2023, 12(3): 913-922. |
[3] | Song CI, Congjia ZHANG, Baochang LIU, Yanglin ZHOU. Dynamic reconfigurable battery energy storage technology: Principle and application [J]. Energy Storage Science and Technology, 2023, 12(11): 3445-3455. |
[4] | Ziya XING, Wei LIU, Juncheng GENG, Xinghua ZHOU, Yue XIA. Line-loss minimization strategy of a distribution network with battery energy storage systems based on heuristic algorithm [J]. Energy Storage Science and Technology, 2023, 12(11): 3406-3413. |
[5] | Yu CAO, Tong JIANG, Chi LIU, Yong YANG, Wenfei LIU, Wenying LIU. Electrochemical energy storage participation in primary frequency regulation control strategy considering frequency characteristics and energy storage battery state [J]. Energy Storage Science and Technology, 2023, 12(10): 3120-3130. |
[6] | Mingfei LI, Mumin RAO, Wanmei SUN, Shuxin CUI, Wei CHEN. Analysis method based on porous medium modeling for thermal management system of large capacity battery energy storage [J]. Energy Storage Science and Technology, 2022, 11(8): 2526-2536. |
[7] | Yu SHI, Zhong ZHANG, Jingying YANG, Wei QIAN, Hao LI, Xiang ZHAO, Xintong YANG. Opportunity cost modelling and market strategy of energy storage participating in the AGC market [J]. Energy Storage Science and Technology, 2022, 11(7): 2366-2373. |
[8] | Xinlei CAI, Kai DONG, Zijie MENG, Zhenfan YU, Boxiao WANG, Yang YU. AGC command tracking control strategy for battery energy storage power station based on optimized dynamic grouping technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1475-1481. |
[9] | Hao LI, Chang LIU, Bo MIAO, Jing ZHANG. Coordinative optimal dispatch of multi-park integrated energy system considering complementary cooling, heating and power and energy storage systems [J]. Energy Storage Science and Technology, 2022, 11(5): 1482-1491. |
[10] | Feng TIAN, Zhijiang CHENG, Handi YANG, Tianxiang YANG. Fault-tolerant control strategy for modular multi-level hybrid converter battery energy storage system [J]. Energy Storage Science and Technology, 2022, 11(5): 1583-1591. |
[11] | Fulin FAN, Junhui LI, CAMPOS-GAONA David, Gangui YAN. Energy storage-friendly frequency response service markets: The UK perspective [J]. Energy Storage Science and Technology, 2022, 11(4): 1278-1288. |
[12] | Zhen YAO, Rui WANG, Xue YANG, Qi ZHANG, Qinghua LIU, Baoguo WANG, Ping MIAO. Current situations and prospects of zinc-iron flow battery [J]. Energy Storage Science and Technology, 2022, 11(1): 78-88. |
[13] | Huan ZHU, Guojing LIU, Xing ZHANG, Fen YUE, Zhenhua YU. Policy and economic comparison of natural gas power generation and battery energy storage in peak regulation [J]. Energy Storage Science and Technology, 2021, 10(6): 2392-2402. |
[14] | Tianao ZHANG, Hao LIU, Yongchong CHEN, Qingsong WANG, Shuxing ZHANG, Qiquan ZENG. Intrinsic safety of energy storage in a high-capacity battery [J]. Energy Storage Science and Technology, 2021, 10(6): 2293-2302. |
[15] | Zeng'ang JIA, Zhibin LING, Xuguang LI. Thermal characteristics of lithium-ion battery with sinusoidal charge and discharge pulsating current [J]. Energy Storage Science and Technology, 2021, 10(6): 2260-2268. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||