Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (11): 4098-4111.doi: 10.19799/j.cnki.2095-4239.2025.0493
• Energy Storage Materials and Devices • Previous Articles Next Articles
Received:2025-05-26
Revised:2025-07-01
Online:2025-11-28
Published:2025-11-24
CLC Number:
Kai TANG. Design of a continuous production facility for solid solution manganese iron pyrophosphate[J]. Energy Storage Science and Technology, 2025, 14(11): 4098-4111.
Fig. 7
(a) SEM image of (Fe0.35Mn0.65)2P2O7 magnified 50,000 times, (b) SEM image of (Fe0.35Mn0.65)2P2O7 magnified 20000 times, (c) X-ray diffraction pattern of (Fe0.35Mn0.65)2P2O7, (d) HAADF image of (Fe0.35Mn0.65)2P2O7, (e) EDS mapping of Mn element of (Fe0.35Mn0.65)2P2O7, (f) EDS mapping of Fe element of (Fe0.35Mn0.65)2P2O7"
Fig. 8
(a) Scanning electron microscope image of LiFe0.35Mn0.65PO4/C magnified 50,000 times, (b) Scanning electron microscope image of LiFe0.35Mn0.65PO4/C magnified 5,000 times, (c) X-ray diffraction pattern of LiFe0.35Mn0.65PO4/C, (d) HAADF image of LiFe0.35Mn0.65PO4/C, (e) EDS mapping of Mn element of LiFe0.35Mn0.65PO4/C, (f) EDS mapping of Fe element of LiFe0.35Mn0.65PO4/C"
| [1] | WANG L, LI Y, DAI Y N, et al. Effect of Mn content on electrochemical performance and energy density of LiFe1- xMnxPO4/C[J]. Vacuum, 2022, 196: 110730. DOI: 10.1016/j.vacuum.2021. 110730. |
| [2] | DENG Y F, YANG C X, ZOU K X, et al. Recent advances of Mn-rich LiFe1- yMnyPO4 (0.5≤y<1.0) cathode materials for high energy density lithium ion batteries[J]. Advanced Energy Materials, 2017, 7(13): 1601958. DOI: 10.1002/aenm.201601958. |
| [3] | OH S M, JUNG H G, YOON C S, et al. Enhanced electrochemical performance of carbon-LiFe1- xMnxPO4 nanocomposite cathode for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(16): 6924-6928. DOI: 10.1016/j.jpowsour.2010.11.159. |
| [4] | KIM J K, VIJAYA R, ZHU L K, et al. Improving electrochemical properties of porous iron substituted lithium manganese phosphate in additive addition electrolyte[J]. Journal of Power Sources, 2015, 275: 106-110. DOI: 10.1016/j.jpowsour.2014. 11.028. |
| [5] | YAMADA A, KUDO Y, LIU K Y. Phase diagram of Lix(MnyFe1- y)PO4 (0≤x, y≤1)[J]. Journal of the Electrochemical Society, 2001, 148(10): A1153. DOI: 10.1149/1.1401083. |
| [6] | KOPE¢ M, YAMADA A, KOBAYASHI G, et al. Structural and magnetic properties of LixMnyFe1- yPO4 electrode materials for Li-ion batteries[J]. Journal of Power Sources, 2009, 189(2): 1154-1163. DOI: 10.1016/j.jpowsour.2008.12.096. |
| [7] | YAMADA A, CHUNG S C. Crystal chemistry of the olivine-type LiMnyFe1- yPO4 and MnyFe1- yPO4 as possible 4 V cathode materials for lithium batteries[J]. Journal of the Electrochemical Society, 2001, 148(8): A960. DOI: 10.1149/1.1385377. |
| [8] | JENSEN K M Ø, CHRISTENSEN M, GUNNLAUGSSON H P, et al. Defects in hydrothermally synthesized LiFePO4 and LiFe1- xMnxPO4 cathode materials[J]. Chemistry of Materials, 2013, 25(11): 2282-2290. DOI: 10.1021/cm4008393. |
| [9] | GARDINER G R, ISLAM M S. Anti-site defects and ion migration in the LiFe0.5Mn0.5PO4 mixed-metal cathode material[J]. Chemistry of Materials, 2010, 22(3): 1242-1248. DOI: 10.1021/cm902720z. |
| [10] | HUANG W F, TAO S, ZHOU J, et al. Phase separations in LiFe1- xMnxPO4: A random stack model for efficient cathode materials[J]. The Journal of Physical Chemistry C, 2014, 118(2): 796-803. DOI: 10.1021/jp4081564. |
| [11] | PAOLELLA A, BERTONI G, DILENA E, et al. Redox centers evolution in phospho-olivine type (LiFe0.5Mn0.5PO4) nanoplatelets with uniform cation distribution[J]. Nano Letters, 2014, 14(3): 1477-1483. DOI: 10.1021/nl4046697. |
| [12] | OMBRINI P, BAZANT M Z, WAGEMAKER M, et al. Thermodynamics of multi-sublattice battery active materials: From an extended regular solution theory to a phase-field model of LiMnyFe1- yPO4[J]. NPJ Computational Materials, 2023, 9: 148. DOI: 10.1038/s41524-023-01109-1. |
| [13] | MUÑOZ-GARCÍA A B, TIRRI B, CAPONE I, et al. Structural evolution of disordered LiCo1/3Fe1/3Mn1/3PO4 in lithium batteries uncovered[J]. Journal of Materials Chemistry A, 2020, 8(37): 19641-19653. DOI: 10.1039/D0TA05350C. |
| [14] | LI S Z, ZHANG H, LIU Y, et al. Comprehensive understanding of structure transition in LiMnyFe1- yPO4 during delithiation/lithiation[J]. Advanced Functional Materials, 2024, 34(4): 2310057. DOI: 10.1002/adfm.202310057. |
| [15] | RAVNSBÆK D B, XIANG K, XING W, et al. Extended solid solutions and coherent transformations in nanoscale olivine cathodes[J]. Nano Letters, 2014, 14(3): 1484-1491. DOI: 10.1021/nl404679t. |
| [16] | SARAVANAN K, RAMAR V, BALAYA P, et al. LiMnxFe1- xPO4/C (x = 0.5, 0.75 and 1) nanoplates for lithium storage application[J]. Journal of Materials Chemistry, 2011, 21(38): 14925-14935. DOI: 10.1039/C1JM11541C. |
| [17] | DU K, ZHANG L H, CAO Y B, et al. Synthesis of LiMn0.2Fe0.8PO4/C by co-precipitation method and its electrochemical performances as a cathode material for lithium-ion batteries[J]. Materials Chemistry and Physics, 2012, 136(2/3): 925-929. DOI: 10.1016/j.matchemphys. 2012.08.021. |
| [18] | ZUO P J, WANG L G, ZHANG W, et al. A novel nanoporous Fe-doped lithium manganese phosphate material with superior long-term cycling stability for lithium-ion batteries[J]. Nanoscale, 2015, 7(27): 11509-11514. DOI: 10.1039/C5NR01881A. |
| [19] | KIM M S, JEGAL J P, ROH K C, et al. Synthesis of LiMn0.75Fe0.25PO4/C microspheres using a microwave-assisted process with a complexing agent for high-rate lithium ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(27): 10607-10613. DOI: 10.1039/C4TA01197J. |
| [20] | KIM M S, KIM H K, LEE S W, et al. Synthesis of reduced graphene oxide-modified LiMn0.75Fe0.25PO4 microspheres by salt-assisted spray drying for high-performance lithium-ion batteries[J]. Scientific Reports, 2016, 6: 26686. DOI: 10.1038/srep26686. |
| [21] | YANG C C, CHEN W H. Microsphere LiFe0.5Mn0.5PO4/C composite as high rate and long-life cathode material for lithium-ion battery[J]. Materials Chemistry and Physics, 2016, 173: 482-490. DOI: 10.1016/j.matchemphys.2016.02.042. |
| [22] | ZHANG X, HOU M Y, TAMIRATE A G, et al. Carbon coated nano-sized LiMn0.8Fe0.2PO4 porous microsphere cathode material for Li-ion batteries[J]. Journal of Power Sources, 2020, 448: 227438. DOI: 10.1016/j.jpowsour.2019.227438. |
| [23] | ZHANG B, WANG X J, LIU Z J, et al. Enhanced electrochemical performances of carbon coated mesoporous LiFe0.2Mn0.8PO4[J]. Journal of the Electrochemical Society, 2010, 157(3): A285. DOI: 10.1149/1.3280230. |
| [24] | OH S M, MYUNG S T, CHOI Y S, et al. Co-precipitation synthesis of micro-sized spherical LiMn0.5Fe0.5PO4 cathode material for lithium batteries[J]. Journal of Materials Chemistry, 2011, 21(48): 19368-19374. DOI: 10.1039/C1JM13889H. |
| [25] | XIANG W, WANG E H, CHEN M Z, et al. Hierarchical structured LiMn0.5Fe0.5PO4 spheres synthesized by template-engaged reaction as cathodes for high power Li-ion batteries[J]. Electrochimica Acta, 2015, 178: 353-360. DOI: 10.1016/j.electacta.2015.08.024. |
| [26] | VANAPHUTI P, MANTHIRAM A. Enhancing the Mn redox kinetics of LiMn0.5Fe0.5PO4 cathodes through a synergistic co-doping with niobium and magnesium for lithium-ion batteries[J]. Small, 2024, 20(47): 2404878. DOI: 10.1002/smll.202404878. |
| [27] | LV Z, LI M L, LIN J X, et al. First-principles study on LiMn0.5Fe0.5PO4 doping to decrease the Jahn-Teller effect[J]. Journal of Solid State Electrochemistry, 2024, 28(2): 577-587. DOI: 10.1007/s10008-023-05705-5. |
| [28] | YANG L T, XIA Y G, QIN L F, et al. Concentration-gradient LiMn0.8Fe0.2PO4 cathode material for high performance lithium ion battery[J]. Journal of Power Sources, 2016, 304: 293-300. DOI: 10.1016/j.jpowsour.2015.11.037. |
| [29] | OH S M, MYUNG S T, PARK J B, et al. Double-structured LiMn0.85Fe0.15PO4 coordinated with LiFePO4 for rechargeable lithium batteries[J]. Angewandte Chemie International Edition, 2012, 51(8): 1853-1856. DOI: 10.1002/anie.201107394. |
| [30] | 易敏, 徐茶清. 一种正极材料LiMn1- xFexPO4/C及其制备方法: CN105702954A[P]. 2016-06-22. |
| YI M, XU C Q. Positive electrode material LiMn1- xFexPO4/C and preparation method thereof: CN105702954A[P]. 2016-06-22. | |
| [31] | KOSOVA N V, TSAPINA A M, SLOBODYUK A B, et al. Structure and electrochemical properties of mixed transition-metal pyrophosphates Li2Fe1- yMnyP2O7 (0≤y≤1)[J]. Electrochimica Acta, 2015, 174: 1278-1289. DOI: 10.1016/j.electacta.2015.06.070. |
| [32] | 余海军, 王涛, 谢英豪, 等. 共沉淀制备磷酸锰铁锂正极材料的方法及其应用: CN115676794B[P]. 2024-01-09. |
| [33] | 谢晓明, 范崇扬, 陈俊涛, 等. 一种碳包覆磷酸锰铁锂材料及其制备方法与电池: CN115744860B[P]. 2023-10-13. |
| [34] | 任翔, 阮丁山, 陈若葵, 等. 一种焦磷酸锰铁、磷酸锰铁锂及其制备方法与电池: CN117715861A[P]. 2024-03-15. |
| [35] | 洪运涛, 乔梁, 刘新华. Ruthner-喷雾焙烧法废盐酸再生技术在冷轧中的应用[J]. 现代化工, 2005, 25(1): 48-50. DOI: 10.16606/j.cnki.issn0253-4320.2005.01.013. |
| HONG Y T, QIAO L, LIU X H. Application of Ruthner-spray hydrochloric acid regeneration technology in cold rolling[J]. Modern Chemical Industry, 2005, 25(1): 48-50. DOI: 10.16606/j.cnki.issn0253-4320.2005.01.013. | |
| [36] | KOZHUKHAROV S V, TCHAOUSHEV S. Spray pyrolysis equipment for various applications[J]. Journal of Chemical Technology and Metallurgy, 2013, 48(1): 111-118. |
| [37] | 苏宗华. 喷雾焙烧废盐酸再生技术的优化设计[D]. 绵阳: 西南科技大学, 2018. DOI: 10.27415/d.cnki.gxngc.2018.000030. |
| [38] | 吴层, 吴家辉, 苏丹, 等. 一种采用喷雾热分解技术制备磷酸锰铁材料的方法: CN118183674A[P]. 2024-06-14. |
| [39] | LEI Z H, WANG J L, YANG J, et al. Nano-/microhierarchical-structured LiMn0.85Fe0.15PO4 cathode material for advanced lithium ion battery[J]. ACS Applied Materials & Interfaces, 2018, 10(50): 43552-43560. DOI: 10.1021/acsami.7b04193. |
| [40] | 汤凯. 一种电极活性材料及其制备方法、碳包覆磷酸锰铁锂的制备方法: CN119349534A[P]. 2025-01-24. |
| [41] | 汤凯. 一种磷酸锰铁锂正极材料前驱体的生产设备及其生产方法: CN119500014A[P]. 2025-02-25. |
| [42] | ADHAM K, LEE C, SMALL D. Energy consumption for iron chloride pyrohydrolysis: A comparison between fluidized beds and spray roasters[C]// Iron Control in Hydrometallurgy: Proceedings of the Third International Symposium. Montreal, Canada, 2006. |
| [43] | SCHIEMANN M, WIRTZ S, SCHERER V, et al. Spray roasting of iron chloride FeCl2: Laboratory scale experiments and a model for numerical simulation[J]. Powder Technology, 2012, 228: 301-308. DOI: 10.1016/j.powtec.2012.05.037. |
| [44] | SCHIEMANN M, WIRTZ S, SCHERER V, et al. Spray roasting of iron chloride FeCl2: Numerical modelling of industrial scale reactors[J]. Powder Technology, 2013, 245: 70-79. DOI: 10.1016/j.powtec.2013.04.034. |
| [45] | NARITA E, OKABE T. The thermal decomposition of manganese(III) phosphate monohydrate[J]. Bulletin of the Chemical Society of Japan, 1983, 56(9): 2841-2842. DOI: 10.1246/bcsj.56.2841. |
| [46] | KAWAZOE H, AMETANI K, IMAI M, et al. The "overcondensation" of phosphate ions and the formation of conjugate metal oxide upon the thermal dehydration-condensation of hydrogenorthophosphates[J]. Bulletin of the Chemical Society of Japan, 1978, 51(10): 2886-2889. DOI: 10.1246/bcsj.51.2886. |
| [47] | MENTER F R. Two-equation EDDY-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. DOI: 10.2514/3.12149. |
| [1] | Zhipeng WEN, Kai PAN, Yi WEI, Jiawen GUO, Shanli QIN, Wen JIANG, Lian WU, Huan LIAO. Research progress in lithium manganese iron phosphate cathode material modification [J]. Energy Storage Science and Technology, 2024, 13(3): 770-787. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
