Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (11): 4085-4097.doi: 10.19799/j.cnki.2095-4239.2025.0431
• Energy Storage Materials and Devices • Previous Articles Next Articles
Chao TANG1(
), Jia XIANG2(
), Yahao LI1(
), Xuelin YANG1,2,3
Received:2025-05-08
Revised:2025-05-22
Online:2025-11-28
Published:2025-11-24
Contact:
Jia XIANG, Yahao LI
E-mail:1370394796@qq.com;408768011@qq.com;liyahao66@126.com
CLC Number:
Chao TANG, Jia XIANG, Yahao LI, Xuelin YANG. Lithiophilic Ga2O3 nanosheet-modified current collectors for high-performance dendrite-free lithium metal anodes[J]. Energy Storage Science and Technology, 2025, 14(11): 4085-4097.
Fig. 4
(a) CE test of Ga2O3@NF and NF with an area capacity of 1 mAh/cm2 at 1 mA/cm2, (b), (c) EIS profiles before half cells cycle and 15 cycles, (d) Li+ diffusion coefficient calculated by fitting after 15 cycles of half cells, (e) voltage curves of the first Li plating on Ga2O3@NF and NF electrodes with an area capacity of 4 mAh/cm2 at 0.5 mA/cm2, (f), (g) voltage curves of Li plating/stripping on the Ga2O3@NF and NF"
Fig. 6
(a), (b) Cross-sectional SEM images of Li plating on Ga2O3@NF electrode with the deposition capacity of 5 mAh /cm2 at a current density of 0.5 mA/cm2, (c), (d) cross-sectional SEM images of Ga2O3@NF@Li electrode before and after 20 cycles with an area capacity of 1 mAh/cm2 at 1 mA/cm2, (e), (f)cross-sectional SEM images of Li plating on NF electrode with the deposition capacity of 5 mAh/cm2at a current density of 0.5 mA/cm2, (g), (h) cross-sectional SEM images of bare Li electrode before and after 20 cycles with an area capacity of 1 mAh/cm2 at 1 mA/cm2"
Fig. 8
(a)—(c) EIS for symmetric cells assembled with Ga2O3@NF@Li and bare Li cycling with a different number of cycles, (d)—(f) Li+ diffusion coefficient calculated by fitting with a different number of cycles of symmetric cells, (g) the Tafel curves of Ga2O3@NF@Li, NF@Li and bare Li, (h) EIS' fitting results and its corresponding fitting equivalent circuit for Ga2O3@NF@Li and bare Li electrodes"
| [1] | JANG K, SONG H J, PARK J B, et al. Magnesium fluoride-engineered UiO-66 artificial protection layers for dendrite-free lithium metal batteries[J]. Energy & Environmental Science, 2024, 17(13): 4622-4633. DOI: 10.1039/D4EE01428F. |
| [2] | 李晶晶, 蒋丹枫, 李嘉鑫, 等. 高比容量富锂单晶材料的研究进展[J]. 储能科学与技术, 2025, 14(8): 3122-3137. |
| LI J J, JIANG D F, LI J X, et al. Research progress on high specific-capacity lithium-rich single crystal materials[J]. Energy Storage Science and Technology, 2025, 14(8): 3122-3137. | |
| [3] | LI Y H, XIAO X L, ZHANG L L, et al. Co@CoO core-shell cross-linked framework modified 3D Cu for dendrite-free lithium anode[J]. Chemical Engineering Journal, 2024, 491: 151922. DOI: 10.1016/j.cej.2024.151922. |
| [4] | YANG T J, ZHENG W R, XIE Y H, et al. A lithiophilic bimetallic oxide interlayer enabling high-rate and dendrite-free lithium metal anodes[J]. Journal of Materials Chemistry A, 2025, 13(21): 15673-15679. DOI: 10.1039/D5TA01544H. |
| [5] | HAO Z M, LU Y, YANG G J, et al. Designing current collectors to stabilize Li metal anodes[J]. Advanced Materials, 2025, 37(8): 2415258. DOI: 10.1002/adma.202415258. |
| [6] | GUO G D, ZHANG K, ZHU K P, et al. Refined pore structure design and surface modification of 3D porous copper achieving highly stable dendrite-free lithium-metal anode[J]. Advanced Functional Materials, 2024, 34(38): 2402490. DOI: 10.1002/adfm. 202402490. |
| [7] | WANG X C, ZHANG B, CHEN Z H, et al. Achieving a higher lithium density in anodes surpassing that of pure metallic lithium for high-energy-density batteries[J]. Energy & Environmental Science, 2025, 18(11): 5365-5377. DOI: 10.1039/D4EE05289G. |
| [8] | WANG K, WANG C T, LIU S, et al. Pre-constructing a mortice-tenon joint based-layer to achieve an enhanced SEI on Li metal anode[J]. Energy & Environmental Science, 2025, 18(5): 2610-2621. DOI: 10.1039/D4EE04617J. |
| [9] | YANG T, XU X J, CHEN S P, et al. A lithiophilic donor-acceptor polymer modified separator for high-performance lithium metal batteries[J]. Angewandte Chemie International Edition, 2025, 64(9): e202420973. DOI: 10.1002/anie.202420973. |
| [10] | REN W X, ZHU K R, ZHANG W, et al. Dendrite-free lithium metal battery enabled by dendritic mesoporous silica coated separator[J]. Advanced Functional Materials, 2023, 33(34): 2301586. DOI: 10.1002/adfm.202301586. |
| [11] | SHI Y J, WANG Z B, GAO H, et al. A self-supported, three-dimensional porous copper film as a current collector for advanced lithium metal batteries[J]. Journal of Materials Chemistry A, 2019, 7(3): 1092-1098. DOI: 10.1039/C8TA09384A. |
| [12] | HUANG X J, WANG M R, ZHOU Y G, et al. Dual ion regulation enables high-Coulombic-efficiency lithium metal batteries[J]. Nano Energy, 2024, 129: 110031. DOI: 10.1016/j.nanoen.2024.110031. |
| [13] | OU Y, HOU W H, ZHU D, et al. Molecular design of electrolyte additives for high-voltage fast-charging lithium metal batteries[J]. Energy & Environmental Science, 2025, 18(3): 1464-1476. DOI: 10.1039/D4EE04282D. |
| [14] | LIU Y P, HUANG Y X, ZHANG Q, et al. Vertical & lateral ion-flux modulated ion-conductive SEI for high-performance Li-metal batteries[J]. Energy Storage Materials, 2025, 75: 104020. DOI: 10.1016/j.ensm.2025.104020. |
| [15] | WU B L, CHEN C G, RAIJMAKERS L H J, et al. Li-growth and SEI engineering for anode-free Li-metal rechargeable batteries: A review of current advances[J]. Energy Storage Materials, 2023, 57: 508-539. DOI: 10.1016/j.ensm.2023.02.036. |
| [16] | LI W H, LI M S, REN H Q, et al. Nitride solid-state electrolytes for all-solid-state lithium metal batteries[J]. Energy & Environmental Science, 2025, 18(10): 4521-4554. DOI: 10.1039/D4EE04927F. |
| [17] | YANG W J, LIU Y W, SUN X Y, et al. Solvation-tailored PVDF-based solid-state electrolyte for high-voltage lithium metal batteries[J]. Angewandte Chemie International Edition, 2024, 63(18): e202401428. DOI: 10.1002/anie.202401428. |
| [18] | WANG Y D, SI J T, ZHU Y R, et al. Stabilizing lithium metal anodes with bismuth oxide-coated 3D copper foams via an in situ bifunctional mediation layer[J]. Journal of Materials Chemistry A, 2025, 13(18): 13048-13057. DOI: 10.1039/D5TA00228A. |
| [19] | PENG G Q, WANG G H, AKBAR A R, et al. Roll-to-roll fabrication of lithium metal anodes with hierarchical lithiophilic structures and controlled deposition for enhanced stability[J]. Energy Storage Materials, 2024, 66: 103205. DOI: 10.1016/j.ensm.2024.103205. |
| [20] | CHEN G S, LI Z J, ZHAO T, et al. Stable lithium metal batteries enabled by lithiophilic core-shell nanowires on copper foam[J]. Small, 2024, 20(37): 2401465. DOI: 10.1002/smll.202401465. |
| [21] | PANG L, LU J H, YU Y Y, et al. Cationic metal-organic framework arrays to enable dendrite-free lithium metal anodes[J]. ACS Energy Letters, 2024, 9(8): 3746-3753. DOI: 10.1021/acsenergylett. 4c01345. |
| [22] | FAN Y C, HE X, LI H J, et al. Lithiophilic Ni3S2 layer decorated nickel foam (Ni3S2@Ni foam) with fast ion transfer kinetics for long-life lithium metal anodes[J]. Chemical Engineering Journal, 2022, 450: 138384. DOI: 10.1016/j.cej.2022.138384. |
| [23] | LIU W L, MAN J Z, GUO Y W, et al. Lithiophilic Sn layer via pre-electroplating to realize the uniform stripping/plating for dendrite free Li metal anodes[J]. Chemical Engineering Journal, 2023, 475: 146153. DOI: 10.1016/j.cej.2023.146153. |
| [24] | XU J P, HUANG M N, ZHANG C, et al. Hierarchical carbon cloth with Co-Nx nanoneedle arrays: Enabling highly reversible lithium metal anode via enhanced lithiophilicity and structural confinement[J]. Chemical Engineering Journal, 2025, 513: 162883. DOI: 10.1016/j.cej.2025.162883. |
| [25] | WANG K, WANG W J, DENG J L, et al. Highly lithiophilic ZnO nanosheets decorated Ni foam as a stable host for high-performance lithium metal anodes[J]. Journal of Alloys and Compounds, 2021, 889: 161597. DOI: 10.1016/j.jallcom.2021.161597. |
| [26] | HUANG G X, LOU P, XU G H, et al. Co3O4 nanosheet decorated nickel foams as advanced lithium host skeletons for dendrite-free lithium metal anode[J]. Journal of Alloys and Compounds, 2020, 817: 152753. DOI: 10.1016/j.jallcom.2019.152753. |
| [27] | WANG X, XU L, NIU S Z, et al. Long-cycling, fast-charging lithium metal batteries enabled by nickel-carbon composite nanosheet arrays modified lithium metal anodes[J]. Small, 2025, 21(4): 2404532. DOI: 10.1002/smll.202404532. |
| [28] | HUANG K, SONG S P, XUE Z Y, et al. In-situ formation of LiF-rich solid-electrolyte interphases on 3D lithiophilic skeleton for stable lithium metal anode[J]. Energy Storage Materials, 2023, 55: 301-311. DOI: 10.1016/j.ensm.2022.12.003. |
| [29] | BAEK K, LEE W G, IM E, et al. Gradient lithium metal infusion in Ag-decorated carbon fibers for high-capacity lithium metal battery anodes[J]. Nano Letters, 2023, 23(18): 8515-8523. DOI: 10.1021/acs.nanolett.3c02229. |
| [30] | LUO Z, LIU C, TIAN Y, et al. Dendrite-free lithium metal anode with lithiophilic interphase from hierarchical frameworks by tuned nucleation[J]. Energy Storage Materials, 2020, 27: 124-132. DOI: 10.1016/j.ensm.2020.01.025. |
| [31] | ZHOU Y, ZHANG J M, ZHAO K, et al. A novel dual-protection interface based on gallium-lithium alloy enables dendrite-free lithium metal anodes[J]. Energy Storage Materials, 2021, 39: 403-411. DOI: 10.1016/j.ensm.2021.04.042. |
| [32] | ZHANG Z L, JIN Y, ZHAO Y, et al. Homogenous lithium plating/stripping regulation by a mass-producible Zn particles modified Li-metal composite anode[J]. Nano Research, 2021, 14(11): 3999-4005. DOI: 10.1007/s12274-021-3326-y. |
| [33] | MA J P, ZHANG Z L, ZHANG B, et al. Three-dimensional flower-like NiO on Cu foam as a lithiophilic current collector for high-performance lithium metal batteries[J]. Sustainable Energy & Fuels, 2023, 7(23): 5492-5498. DOI: 10.1039/D3SE01262J. |
| [34] | KIM S, KIM D H, CHO M, et al. Long-life lithium-sulfur battery enabled by a multifunctional gallium oxide shield[J]. Chemical Engineering Journal, 2021, 420: 129772. DOI: 10.1016/j.cej.2021. 129772. |
| [35] | NI S B, CHEN Q C, LIU J L, et al. New insights into the Li-storage mechanism in α-Ga2O3 anode and the optimized electrode design[J]. Journal of Power Sources, 2019, 433: 126681. DOI: 10.1016/j.jpowsour.2019.05.087. |
| [36] | WANG F, GAO J X, LIU Y, et al. An amorphous ZnO and oxygen vacancy modified nitrogen-doped carbon skeleton with lithiophilicity and ionic conductivity for stable lithium metal anodes[J]. Journal of Materials Chemistry A, 2022, 10(34): 17395-17405. DOI: 10.1039/D2TA03706H. |
| [37] | YANG W J, ZHANG X H, TAN H T, et al. Gallium-based anodes for alkali metal ion batteries[J]. Journal of Energy Chemistry, 2021, 55: 557-571. DOI: 10.1016/j.jechem.2020.07.035. |
| [38] | LI G, XU S W, LI B, et al. Free-standing films based on Ni wires core/foamed NiO shell as hosts for stable lithium anodes[J]. Journal of Power Sources, 2021, 506: 230161. DOI: 10.1016/j.jpowsour.2021.230161. |
| [1] | Gongxun LU, Huadong YUAN, Jianmin LUO, Yao WANG, Yujing LIU, Peng SHI, Shihui ZOU, Guangmin ZHOU, Xinyong TAO, Jianwei NAI. Surface pre-treatment strategies for lithium metal: Advancement and perspective [J]. Energy Storage Science and Technology, 2025, 14(3): 947-964. |
| [2] | Yi LIANG, Tao WEI, Guangda YIN, Dequan HUANG. Design of a lithiophilic Ag-3D-Cu electrode and its electrochemical performance [J]. Energy Storage Science and Technology, 2025, 14(2): 515-524. |
| [3] | Min SHI, Pengjie JIANG, Chen XU, Xin HE, Xiao LIANG. Advancements in electrolyte optimization strategies for inhibiting lithium dendrite growth [J]. Energy Storage Science and Technology, 2024, 13(5): 1620-1634. |
| [4] | Yu HAN, Shengling CAO, Jing NING, Kangli WANG, Kai JIANG, Min ZHOU. Strategies for interfacial modification in lithium metal batteries with polymers [J]. Energy Storage Science and Technology, 2023, 12(8): 2491-2503. |
| [5] | Lingxuan LI, Zixuan WANG, Chenzi ZHAO, Rui ZHANG, Yang LU, Jiaqi HUANG, Aibing CHEN, Qiang ZHANG. A review of numerical models for composite lithium metal anodes [J]. Energy Storage Science and Technology, 2023, 12(7): 2059-2078. |
| [6] | Xin SHEN, Rui ZHANG, Chenzi ZHAO, Peng WU, Yutong ZHANG, Jundong ZHANG, Lizhen FAN, Quanbing LIU, Aibing CHEN, Qiang ZHANG. Recent advances in mechano-electrochemistry in lithium metal batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2781-2797. |
| [7] | Yangyang LIU, Xuyang WANG, Xieyu XU, Yongjing WANG, Shizhao XIONG, Zhongxiao SONG. Research progresses on modified current collector for lithium metal anode [J]. Energy Storage Science and Technology, 2021, 10(4): 1261-1272. |
| [8] | Weihui LI, Xingguo ZHONG, Huiqiao LI. The passivation of Li anode and its application in energy storage [J]. Energy Storage Science and Technology, 2021, 10(3): 974-986. |
| [9] | Jianwen FENG, Shiguang HU, Bing HAN, Yinglin XIAO, Yonghong DENG, Chaoyang WANG. Research progress of electrolyte optimization for lithium metal batteries [J]. Energy Storage Science and Technology, 2020, 9(6): 1629-1640. |
| [10] | ZHANG Weidong, FAN Lei, ZHU Shoupu, LU Yingying. Recent developments in high-energy lithium-sulfur batteries [J]. Energy Storage Science and Technology, 2017, 6(3): 534-549. |
| [11] | SUN Yingzhi, HUANG Jiaqi, ZHANG Xueqiang, ZHANG Qiang. Review on solid state lithium-sulfur batteries with sulfide solid electrolytes [J]. Energy Storage Science and Technology, 2017, 6(3): 464-478. |
| [12] | SHEN Xin, ZHANG Rui, CHENG Xinbing, GUAN Chao, HUANG Jiaqi, ZHANG Qiang. Recent progress on in-situ observation and growth mechanism of lithium metal dendrites [J]. Energy Storage Science and Technology, 2017, 6(3): 418-432. |
| [13] | CHEN Yuqing1,2, YANG Xiaofei1,2, YU Ying1,2, LI Xianfeng1,3, ZHANG Hongzhang1,3, ZHANG Huamin1,3. Key materials and technology research progress of lithium-sulfur batteries [J]. Energy Storage Science and Technology, 2017, 6(2): 169-189. |
| [14] | GUO Yuguo . Project “High-energy solid-state lithium metal batteries based on nanostructured materials” [J]. Energy Storage Science and Technology, 2016, 5(6): 919-921. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||