Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (3): 1133-1140.doi: 10.19799/j.cnki.2095-4239.2024.1135
• Emerging Investigator Issue of Energy Storage • Previous Articles Next Articles
Cheng YUAN(), Qian SHEN, Ruiwen ZHANG, Shiming ZHANG(
)
Received:
2024-12-02
Revised:
2024-12-16
Online:
2025-03-28
Published:
2025-04-28
Contact:
Shiming ZHANG
E-mail:y18944842989@163.com;smzhang@shu.edu.cn
CLC Number:
Cheng YUAN, Qian SHEN, Ruiwen ZHANG, Shiming ZHANG. Rapid microwave synthesis of platinum-copper alloy as efficient oxygen reduction electrocatalyst[J]. Energy Storage Science and Technology, 2025, 14(3): 1133-1140.
1 | RAHMAN A, FARROK O, HAQUE M M. Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic[J]. Renewable and Sustainable Energy Reviews, 2022, 161: 112279. DOI: 10.1016/j.rser.2022.112279. |
2 | 李淼, 盖克荣, 周凤颖, 等. 低温燃料电池在汽车工程中的供储能特性分析[J]. 储能科学与技术, 2024, 13(7): 2483-2485. DOI: 10.19799/j.cnki.2095-4239.2024.0556. |
LI M, GAI K R, ZHOU F Y, et al. Analysis of energy supply and storage characteristics of fuel cells in automotive engineering[J]. Energy Storage Science and Technology, 2024, 13(7): 2483-2485. DOI: 10.19799/j.cnki.2095-4239.2024.0556. | |
3 | TELLEZ-CRUZ M M, ESCORIHUELA J, SOLORZA-FERIA O, et al. Proton exchange membrane fuel cells (PEMFCs): Advances and challenges[J]. Polymers, 2021, 13(18): 3064. DOI: 10.3390/polym13183064. |
4 | OlABI A G, WILBERFORCE T, AlANAZI A, et al. Novel trends in proton exchange membrane fuel cells[J]. Energies, 2022, 15(14): 4949. DOI: 10.3390/en15144949. |
5 | CHEN Y Z, ZHANG S M, CHUNG-YEN JUNG J, et al. Carbons as low-platinum catalyst supports and non-noble catalysts for polymer electrolyte fuel cells[J]. Progress in Energy and Combustion Science, 2023, 98: 101101. DOI: 10.1016/j.pecs. 2023.101101. |
6 | 孔晨华, 张建军, 李旺, 等. 燃料电池在无人机高压输电线路验电系统中的应用展望[J]. 储能科学与技术, 2024, 13(2): 492-494. DOI: 10.19799/j.cnki.2095-4239.2024.0012. |
KONG C H, ZHANG J J, LI W, et al. Application prospect of fuel cell in UAVS high voltage transmission line checking system[J]. Energy Storage Science and Technology, 2024, 13(2): 492-494. DOI: 10.19799/j.cnki.2095-4239.2024.0012. | |
7 | 胡冶州, 王双, 申涛, 等. 限域型贵金属氧还原反应电催化剂研究进展[J]. 储能科学与技术, 2022, 11(4): 1264-1277. DOI: 10.19799/j.cnki.2095-4239.2022.0108. |
HU Y Z, WANG S, SHEN T, et al. Recent progress in confined noble-metal electrocatalysts for oxygen reduction reaction[J]. Energy Storage Science and Technology, 2022, 11(4): 1264-1277. DOI: 10.19799/j.cnki.2095-4239.2022.0108. | |
8 | CAI J L, CHEN J X, CHEN Y Z, et al. Engineering carbon semi-tubes supported platinum catalyst for efficient oxygen reduction electrocatalysis[J]. iScience, 2023, 26(5): 106730. DOI: 10.1016/j.isci.2023.106730. |
9 | ZAMAN S, HUANG L, DOUKA A I, et al. Oxygen reduction electrocatalysts toward practical fuel cells: Progress and perspectives[J]. Angewandte Chemie International Edition, 2021, 60(33): 17832-17852. DOI: 10.1002/anie.202016977. |
10 | AHN C Y, PARK J E, KIM S J, et al. Differences in the electrochemical performance of Pt-based catalysts used for polymer electrolyte membrane fuel cells in liquid half- and full-cells[J]. Chemical Reviews, 2021, 121(24): 15075-15140. DOI: 10.1021/acs.chemrev.0c01337. |
11 | CAO S, SUN T, LI J R, et al. The cathode catalysts of hydrogen fuel cell: From laboratory toward practical application[J]. Nano Research, 2022, 16(4): 4365-4380. DOI: 10.1007/s12274-022-5082-z. |
12 | RAO X B, ZHANG S M, ZHANG J J. Effectively controlling the nanostructures and active sites of non-noble carbon catalysts for improving oxygen reduction reaction[J]. Current Opinion in Electrochemistry, 2023, 42: 101416. DOI: 10.1016/j.coelec. 2023.101416. |
13 | YANG Z L, CHEN Y Z, ZHANG S M, et al. Identification and understanding of active sites of non-noble iron-nitrogen-carbon catalysts for oxygen reduction electrocatalysis[J]. Advanced Functional Materials, 2023, 33(26): 2215185. DOI: 10.1002/adfm. 202215185. |
14 | LIU L Q, RAO X B, ZHANG S M, et al. Insight into synergy for oxygen reduction electrocatalysis of iron-nitrogen-carbon[J]. Chem, 2024, 10(7): 1994-2030. DOI: 10.1016/j.chempr.2024.06.006. |
15 | CHEN M H, CHEN Y T, YANG Z L, et al. Synergy of staggered stacking confinement and microporous defect fixation for high-density atomic FeⅡ-N4 oxygen reduction active sites[J]. Chinese Journal of Catalysis, 2022, 43(7): 1870-1878. DOI: 10.1016/s1872-2067(21)63992-x. |
16 | CAMPOS-ROLDAN C A, JONES D J, ROZIEREJ, et al. Platinum-rare earth alloy electrocatalysts for the oxygen reduction reaction: A brief overview[J]. ChemCatChem, 2022, 14(19): e202200334. DOI: 10.1002/cctc.202200334. |
17 | SUN L Y, CHEN Y Z, ZHANG R W, et al. Synergy of porous network nanostructuring and nonmetallic phosphorus alloying for efficient oxygen reduction of platinum[J]. Journal of Alloys and Compounds, 2024, 985: 173988. DOI: 10.1016/j.jallcom. 2024. 173988. |
18 | PARKASH A, JIA Z, TIAN T, et al. A new generation of platinum-copper electrocatalysts with ultra-low concentrations of platinum for oxygen-reduction reactions in alkaline media[J]. ChemistrySelect, 2020, 5(11): 3391-3397. DOI: 10.1002/slct.202000256. |
19 | YUAN C, ZHANG S M, ZHANG J J. Oxygen reduction electrocatalysis: From conventional to single-atomic platinum-based catalysts for proton exchange membrane fuel cells[J]. Frontiers in Energy, 2024, 18(2): 206-222. DOI: 10.1007/s11708-023-0907-3. |
20 | CHEN T, NINGF H, Qi J Z, et al. PtFeCoNiCu high-entropy solid solution alloy as highly efficient electrocatalyst for the oxygen reduction reaction[J]. iScience, 2023, 26(1): 105890. DOI: 10.1016/j.isci.2022.105890. |
21 | CHEN Y Z, ZHANG R W, SUN L Y, et al. Boron-alloyed porous network platinum nanospheres for efficient oxygen reduction in proton exchange membrane fuel cells[J]. Chemical Engineering Journal, 2024, 485: 149998. DOI: 10.1016/j.cej.2024.149998. |
22 | YANG C D, GAO Y, MA T, et al. Metal alloys-structured electrocatalysts: Metal-metal interactions, coordination microenvironments, and structural property-reactivity relationships[J]. Advanced Materials, 2023, 35(51): e2301836. DOI: 10.1002/adma.202301836. |
23 | KIM D G, SOHN Y, JANG I, et al. Formation mechanism of carbon-supported hollow PtNi nanoparticles via one-step preparations for use in the oxygen reduction reaction[J]. Catalysts, 2022. 12(5): 513. DOI: 10.3390/catal12050513. |
24 | LU B A, TIAN N, SUN S G. Surface structure effects of platinum-based catalysts for oxygen reduction reaction[J]. Current Opinion in Electrochemistry, 2017, 4(1): 76-82. DOI: 10.1016/j.coelec. 2017.09.024. |
25 | CHEN Y Z, ZHAO X, YAN H L, et al. Manipulating Pt-skin of porous network Pt-Cu alloy nanospheres toward efficient oxygen reduction[J]. Journal of Colloid and Interface Science, 2023, 652: 1006-1015. DOI: 10.1016/j.jcis.2023.08.134. |
26 | PARKASH A. Metal-organic framework derived ultralow-loading platinum-copper catalyst: A highly active and durable bifunctional electrocatalyst for oxygen-reduction and evolution reactions[J]. Nanotechnology, 2021, 32(32): 325703. DOI: 10.1088/1361-6528/abfb9b. |
27 | ZHANG H M, GUOX Y, LIU W H, et al. Regulating surface composition of platinum-copper nanotubes for enhanced hydrogen evolution reaction in all pH values[J]. Journal of Colloid and Interface Science, 2023, 629(Part A): 53-62. DOI: 10.1016/j.jcis.2022.08.116. |
28 | SU L, SHRESTHA S J, ZHANG Z H, et al. Platinum-copper nanotube electrocatalyst with enhanced activity and durability for oxygen reduction reactions[J]. Journal of Materials Chemistry A, 2013, 1(39): 12293-12301. DOI: 10.1039/c3ta13097e. |
29 | CUI S K, GUO D J. Microwave-assisted preparation of PtCu/C nanoalloys and their catalytic properties for oxygen reduction reaction[J]. Journal of Alloys and Compounds, 2021, 874: 159869. DOI: 10.1016/j.jallcom.2021.159869. |
30 | CAI J L, CHEN Y Z, ZHANG R W, et al. Interfacial Pt-N coordination for promoting oxygen reduction reaction[J]. Chinese Chemical Letters, 2025, 36(2): 110255. DOI: 10.1016/j.cclet. 2024.110255. |
31 | 蔡佳琳, 陈艺哲, 容忠言, 等. 微波合成碳载铂用于氧还原电催化[J]. 储能科学与技术, 2022, 11(12): 3800-3807. DOI: 10.19799/j.cnki. 2095-4239.2022.0473. |
CAI J L, CHEN Y Z, RONG Z Y, et al. Microwave synthesis of carbon supported platinum for oxygen reduction electrocatalysis[J]. Energy Storage Science and Technology, 2022, 11(12): 3800-3807. DOI: 10.19799/j.cnki.2095-4239.2022.0473. |
[1] | WANG Peican, WAN Lei, XU Ziang, XU Qin, PANG Maobin, CHEN Jinxun, WANG Baoguo. Interface engineering of self-supported electrode for electrochemical water splitting [J]. Energy Storage Science and Technology, 2022, 11(6): 1934-1946. |
[2] | Jianxin CHEN, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Study on nickel-based nanoparticles supported by biomass carbon for electrocatalytic hydrogen evolution [J]. Energy Storage Science and Technology, 2022, 11(5): 1350-1357. |
[3] | Yezhou HU, Shuang WANG, Tao SHEN, Ye ZHU, Deli WANG. Recent progress in confined noble-metal electrocatalysts for oxygen reduction reaction [J]. Energy Storage Science and Technology, 2022, 11(4): 1264-1277. |
[4] | Xiaohua DENG, Zhu JANG, Chao CHEN, Dai DANG. Recent advances in zeolitic imidazolium-based metal-organic frameworks (ZIFs) and their derivatives as efficient cathode catalysts for zinc-air batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 964-981. |
[5] | Jialin CAI, Yizhe CHEN, Joey Chung‐Yen JUNG, Jiujun ZHANG, Shiming ZHANG. Microwave synthesis of carbon-supported platinum for oxygen reduction electrocatalysis [J]. Energy Storage Science and Technology, 2022, 11(12): 3800-3807. |
[6] | Feng HE, Jingjing ZHANG, Yijun CHEN, Jian ZHANG, Deli WANG. Recent progress on carbon-based catalysts for electrochemical synthesis of H2O2 via oxygen reduction reaction [J]. Energy Storage Science and Technology, 2021, 10(6): 1963-1976. |
[7] | Yuexia LI, Quanbing LIU. Application of MXene-based nanomaterials in electrocatalysis for oxygen reduction reaction [J]. Energy Storage Science and Technology, 2021, 10(6): 1918-1930. |
[8] | Shishi ZHANG, Yanyang QIN, Yaqiong SU. Activity origin of single/double-atom catalyst for hydrogen evolution reaction [J]. Energy Storage Science and Technology, 2021, 10(6): 2008-2012. |
[9] | Wenwu ZOU, Guoxing JIANG, Li DU. Recent advances in covalent organic frameworks (COFs) for electrocatalysis of oxygen electrodes [J]. Energy Storage Science and Technology, 2021, 10(6): 1891-1905. |
[10] | Shenzhi ZHANG, Likai WANG, Yinggang SUN, Heng LÜ, Ziyin YANG, Leilei LI, Zhongfang LI. Construction of two dimensional carbon-supported Au4Pd2 catalysts and their electrocatalytic performances [J]. Energy Storage Science and Technology, 2021, 10(6): 2028-2038. |
[11] | Ziyue ZHU, Dongju FU, Jianjun CHEN, Bianrong ZENG. Research progress of non-precious metal bifunctional cathode electrocatalysts for zinc-air batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1489-1496. |
[12] | XU Ke, WANG Baoguo. A review of air electrodes for zinc air batteries [J]. Energy Storage Science and Technology, 2017, 6(5): 924-940. |
[13] | CHEN Xiang, LEI Kaixiang, SUN Hongming, CHENG Fangyi, CHEN Jun. Spinel-type transition metal oxide electrocatalysts for metal-air batteries [J]. Energy Storage Science and Technology, 2017, 6(5): 904-923. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||