Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (6): 2416-2430.doi: 10.19799/j.cnki.2095-4239.2024.1174
• Energy Storage System and Engineering • Previous Articles Next Articles
Hao XIONG(), Danzhen GU(
), Changsheng CHENG, Wenhao SHI
Received:
2024-12-12
Revised:
2025-01-15
Online:
2025-06-28
Published:
2025-06-27
Contact:
Danzhen GU
E-mail:2332957947@qq.com;gudanzhen@shiep.edu.cn
CLC Number:
Hao XIONG, Danzhen GU, Changsheng CHENG, Wenhao SHI. Power-system scheduling that takes into account electric-vehicle energy storage and its flexibility analysis[J]. Energy Storage Science and Technology, 2025, 14(6): 2416-2430.
1 | 任大伟, 肖晋宇, 侯金鸣, 等. 双碳目标下我国新型电力系统的构建与演变研究[J]. 电网技术, 2022, 46(10): 3831-3839. DOI:10. 13335/j.1000-3673.pst.2022.0387. |
REN D W, XIAO J Y, HOU J M, et al. Construction and evolution of China's new power system under dual carbon goal[J]. Power System Technology, 2022, 46(10): 3831-3839. DOI: 10.13335/j. 1000-3673.pst.2022.0387. | |
2 | 康小平, 聂慧慧, 郜敏, 等. 电动汽车全生命周期碳排放[J]. 储能科学与技术, 2023, 12(3): 976-984. DOI: 10.19799/j.cnki.2095-4239. 2022.0618. |
KANG X P, NIE H H, GAO M, et al. Research on carbon emission of electric vehicle in its life cycle[J]. Energy Storage Science and Technology, 2023, 12(3): 976-984. DOI: 10.19799/j.cnki.2095-4239.2022.0618. | |
3 | 胡泽春, 邵成成, 何方, 等. 电网与交通网耦合的设施规划与运行优化研究综述及展望[J]. 电力系统自动化, 2022, 46(12): 3-19. DOI: 10.7500/AEPS20220218003. |
HU Z C, SHAO C C, HE F, et al. Review and prospect of research on facility planning and optimal operation for coupled power and transportation networks[J]. Automation of Electric Power Systems, 2022, 46(12): 3-19. DOI: 10.7500/AEPS202202 18003. | |
4 | LU X, CHAN K W, XIA S W, et al. An operation model for distribution companies using the flexibility of electric vehicle aggregators[J]. IEEE Transactions on Smart Grid, 2021, 12(2): 1507-1518. DOI: 10.1109/TSG.2020.3037053. |
5 | 余洋, 张瑞丰, 陆文韬, 等. 基于稳定经济模型预测控制的集群电动汽车辅助电网调频控制策略[J]. 电工技术学报, 2022, 37(23): 6025-6040. DOI: 10.19595/j.cnki.1000-6753.tces.220538. |
YU Y, ZHANG R F, LU W T, et al. Auxiliary frequency regulation control strategy of aggregated electric vehicles based on Lyapunov-based economic model predictive control[J]. Transactions of China Electrotechnical Society, 2022, 37(23): 6025-6040. DOI: 10.19595/j.cnki.1000-6753.tces.220538. | |
6 | LIANG H J, LIU Y G, LI F Z, et al. Dynamic economic/emission dispatch including PEVs for peak shaving and valley filling[J]. IEEE Transactions on Industrial Electronics, 2019, 66(4): 2880-2890. DOI: 10.1109/TIE.2018.2850030. |
7 | 王敏, 吕林, 向月. 计及V2G价格激励的电动汽车削峰协同调度策略[J]. 电力自动化设备, 2022, 42(4): 27-33, 85. DOI: 10.16081/j.epae.202201009. |
WANG M, LÜ L, XIANG Y. Coordinated scheduling strategy of electric vehicles for peak shaving considering V2G price incentive[J]. Electric Power Automation Equipment, 2022, 42(4): 27-33, 85. DOI: 10.16081/j.epae.202201009. | |
8 | 张良, 孙成龙, 蔡国伟, 等. 基于PSO算法的电动汽车有序充放电两阶段优化策略[J]. 中国电机工程学报, 2022, 42(5): 1837-1852. DOI: 10.13334/j.0258-8013.pcsee.211150. |
ZHANG L, SUN C L, CAI G W, et al. Two-stage optimization strategy for coordinated charging and discharging of EVs based on PSO algorithm[J]. Proceedings of the CSEE, 2022, 42(5): 1837-1852. DOI: 10.13334/j.0258-8013.pcsee.211150. | |
9 | 陈凯炎, 牛玉刚. 基于V2G技术的电动汽车实时调度策略[J]. 电力系统保护与控制, 2019, 47(14): 1-9. DOI: 10.19783/j.cnki.pspc. 181011. |
CHEN K Y, NIU Y G. Real-time scheduling strategy of electric vehicle based on vehicle-to-grid application[J]. Power System Protection and Control, 2019, 47(14): 1-9. DOI: 10.19783/j.cnki.pspc.181011. | |
10 | 杨捷, 曹子健. 电动汽车储能V2G模式的成本与收益分析[J]. 储能科学与技术, 2020, 9(S1): 45-51. DOI: 10.19799/j.cnki.2095-4239.2020.0336. |
YANG J, CAO Z J. Cost and benefit analysis of V2G mode for electric vehicle energy storage[J]. Energy Storage Science and Technology, 2020, 9(S1): 45-51. DOI: 10.19799/j.cnki.2095-4239.2020.0336. | |
11 | IEA. Harnessing variable renewables:a guide to the balancing challenge[M]. Paris: IEA, 2011. |
12 | North American Electric Reliability Corporation. Special report: accommodating high levels of variable generation[R]. Princeton: North American Electric Reliability Corporation, 2009. |
13 | 鲁宗相, 林弋莎, 乔颖, 等. 极高比例可再生能源电力系统的灵活性供需平衡[J]. 电力系统自动化, 2022, 46(16): 3-16. DOI: 10.7500/AEPS20220224001. |
LU Z X, LIN Y S, QIAO Y, et al. Flexibility supply-demand balance in power system with ultra-high proportion of renewable energy[J]. Automation of Electric Power Systems, 2022, 46(16): 3-16. DOI: 10.7500/AEPS20220224001. | |
14 | 鲁宗相, 李海波, 乔颖. 高比例可再生能源并网的电力系统灵活性评价与平衡机理[J]. 中国电机工程学报, 2017, 37(1): 9-20. DOI: 10.13334/j.0258-8013.pcsee.162503. |
LU Z X, LI H B, QIAO Y. Flexibility evaluation and supply/demand balance principle of power system with high-penetration renewable electricity[J]. Proceedings of the CSEE, 2017, 37(1): 9-20. DOI: 10.13334/j.0258-8013.pcsee.162503. | |
15 | 詹勋淞, 管霖, 卓映君, 等. 基于形态学分解的大规模风光并网电力系统多时间尺度灵活性评估[J]. 电网技术, 2019, 43(11): 3890-3901. DOI: 10.13335/j.1000-3673.pst.2019.0565. |
ZHAN X S, GUAN L, ZHUO Y J, et al. Multi-scale flexibility evaluation of large-scale hybrid wind and solar grid-connected power system based on multi-scale morphology[J]. Power System Technology, 2019, 43(11): 3890-3901. DOI: 10.13335/j. 1000-3673.pst.2019.0565. | |
16 | 马志程, 周强, 张金平, 等. 考虑灵活性负荷异构性质的多类型储能优化配置[J]. 储能科学与技术, 2022, 11(12): 3926-3936. DOI: 10. 19799/j.cnki.2095-4239.2022.0395. |
MA Z C, ZHOU Q, ZHANG J P, et al. Optimal configuration of multitype energy storages considering heterogeneous flexible loads[J]. Energy Storage Science and Technology, 2022, 11(12): 3926-3936. DOI: 10.19799/j.cnki.2095-4239.2022.0395. | |
17 | 李强, 邓卿, 林鸿基, 等. 计及灵活性的配电系统接纳电动汽车能力评估与提升策略[J]. 电力科学与技术学报, 2019, 34(3): 37-46. DOI: 10.19781/j.issn.1673-9140.2019.03.004. |
LI Q, DENG Q, LIN H J, et al. Assessment and enhancement of accommodation capability for electric vehicles by a distribution system with flexibility resources[J]. Journal of Electric Power Science and Technology, 2019, 34(3): 37-46. DOI: 10.19781/j.issn.1673-9140.2019.03.004. | |
18 | 史喆, 梁毅, 李华, 等. 计及灵活性多目标电-热-交通综合能源系统区间优化运行[J]. 电力系统保护与控制, 2022, 50(21): 33-42. DOI: 10.19783/j.cnki.pspc.220022. |
SHI Z, LIANG Y, LI H, et al. Interval optimal operation of a multi-objective electric-thermal-transportation integrated energy system considering flexibility[J]. Power System Protection and Control, 2022, 50(21): 33-42. DOI: 10.19783/j.cnki.pspc.220022. | |
19 | 梁燕, 吉喆, 樊伟, 等. 适应新型电力系统多类灵活性资源日前-实时协同优化模型[J]. 上海理工大学学报, 2024, 46(4): 440-451. DOI:10.13255/j.cnki.jusst.20230307001. |
LIANG Y, JI Z, FAN W, et al. Multiple types flexible resources day-ahead and real-time collaborative optimal model adapted to new power system[J]. University of Shanghai for Science and Technology, 2024, 46(4): 440-451. DOI:10.13255/j.cnki.jusst. 20230307001. | |
20 | 陈俊艺. 计及用户用电行为聚类的不确定性需求响应概率模型研究[D]. 武汉: 武汉大学, 2019. DOI: 10.27379/d.cnki.gwhdu. 2019. 001521. |
CHEN J Y. Study on the probability model of uncertain demand response considering electricity consumption behavior clustering[D]. Wuhan: Wuhan University, 2019. DOI: 10.27379/d.cnki.gwhdu.2019.001521. | |
21 | 孙沛, 赵亮, 田宏梁, 等. 考虑出力特性的光热参与电力平衡容量研究[J]. 电工电能新技术, 2024, 43(3): 103-112. |
SUN P, ZHAO L, TIAN H L, et al. Study on CSP participation in power balance capacity considering output characteristics[J]. Advanced Technology of Electrical Engineering and Energy, 2024, 43(3): 103-112. |
[1] | Xingguang CHEN, Yifan SHEN, Yuxin SHAO, Yuejiu ZHENG, Tao SUN, Xin LAI, Kai SHEN, Xuebing HAN. Capacity identification method for LiFePO4 batteries with specific optimization in real vehicle applications [J]. Energy Storage Science and Technology, 2024, 13(9): 2963-2971. |
[2] | Songyan LIU, Weiliang WANG, Shiliang PENG, Junfu LYU. Thermal management system for power battery in high/low-temperature environments [J]. Energy Storage Science and Technology, 2024, 13(7): 2181-2191. |
[3] | Yunjie LU. Research on control technology of electric vehicle energy storage system [J]. Energy Storage Science and Technology, 2024, 13(2): 608-610. |
[4] | Jie ZHU. Analysis of thermal storage performance of electric vehicle thermal phase change energy storage system under the background of new energy and low carbon [J]. Energy Storage Science and Technology, 2024, 13(12): 4406-4408. |
[5] | Ruijie HONG, Danzhen GU, Ruanqing MO, Sinan CAI, Chaolin ZHANG. Research on optimization of EV energy storage V2G strategy based on user preference [J]. Energy Storage Science and Technology, 2023, 12(8): 2659-2667. |
[6] | Xinlei CAI, Jinzhou ZHU, Mai LIU, Jiale LIU, Zijie MENG, Yang YU. Peak shaving strategy of electric vehicles based on an improved Dingo optimization algorithm [J]. Energy Storage Science and Technology, 2023, 12(6): 1913-1919. |
[7] | Shigang LUO, Jie TENG, Zhuangxi TAN. Optimal allocation of energy storage in distribution network considering aggregate regulation of electric vehicles [J]. Energy Storage Science and Technology, 2023, 12(11): 3395-3405. |
[8] | Guanghua WU, Hongsheng LI, Fei LI, Bo CHEN, Shike ZHANG. Research on the prediction of carbon emissions in the whole life cycle of electric vehicles considering time correlation [J]. Energy Storage Science and Technology, 2022, 11(7): 2206-2212. |
[9] | Jun WANG, Lin RUAN, Yanliang QIU. Research progress on rapid heating methods for lithium-ion battery in low-temperature [J]. Energy Storage Science and Technology, 2022, 11(5): 1563-1574. |
[10] | Yan ZHANG, Wei HAN, Chuang SONG, Shuangyi YANG. Joint planning and operation optimization of photovoltaic-storage- charging integrated station containing electric vehicles [J]. Energy Storage Science and Technology, 2022, 11(5): 1502-1511. |
[11] | Xiaogang WU, Zhihao CUI, Yizhao SUN, Kun ZHANG, Jiuyu DU. Charging strategy and thermal management technology of power battery in high power charging process of electric vehicle [J]. Energy Storage Science and Technology, 2021, 10(6): 2218-2234. |
[12] | ZHU Zhangtao1, CHEN Haojie2, DAI Junjie1, LI Weibin1, LI Xue2 . Probabilistic load flow calculation of distribution network with wind power and electric vehicles based on space transform#br# [J]. Energy Storage Science and Technology, 2017, 6(1): 127-134. |
[13] | LI Hong. Project “High energy density lithium batteries for long range EV” [J]. Energy Storage Science and Technology, 2016, 5(6): 915-918. |
[14] | CHEN Yongchong, WANG Qiuping. V2G or VEG?An investigation into the business model for future electric vehicles based on technological developments [J]. Energy Storage Science and Technology, 2013, 2(3): 307-311. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||